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In this work first we review some cases where the action exhibits a minimal or a saddle-
point criticality for velocity-independent potentials (V (x, t)) and maximum when the
potential is velocity-dependent (V (x, ẋ, t)). In the following we will use the functional
(“directional”) derivative of second order to present a mathematically rigorous proof
of the non-maximality of the classical functional action for potentials V (x, t) velocity-
independent. Copyright 2012 Author(s). This article is distributed under a Creative
Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4747508]

I. INTRODUCTION

The Hamilton principle is called by several authors the principle of least action.1–4 Others
refer to the stationary or critical action5–7 but a majority of them do not discuss the nature of this
criticality (maximum, saddle or minimum) because they do not follow it beyond the first-order
functional variation, which is just enough to obtain the equations of motion of Euler-Lagrange and
to proceed with their applications and dismemberments.

In 2007, C. Gray and E. Taylor8 presented a discussion about non-maximality of stationary action
and showed that the solution of the equation of the simple harmonic oscillator is a saddle point of
the action by assuming that the time in the Lagrangian integral is greater than the semi-period of the
oscillator, which is physically relevant to allow oscillations in this range. This is also contained in
Chapter 6 of the book of David Morin.9 In Ref. 10 we present a variety of models of least action for
velocity-independent potentials and models of maximum action for velocity-dependent potentials.

In addition, Gray, Taylor and Morin have also shown an “intuitive proof” (expression contained
in Ref. 8, which cite Refs. 9, 11, and 12) of a result which states that the action can never be
maximum if the potential of the Lagrangian is velocity-independent, leaving for this potential, only
the case of minimum or saddle. These demonstrations constitute one of the few references that
discuss the subject and also have an important pedagogical character: an intuitive proof is equivalent
to a plausible or reasonable argument, although not mathematically rigorous.

However, in this article we will work with the functional derivative of second order in the
same line of reasoning of the Ref. 10 and so we realize a “rigorous proof” of non-maximality of
the action functional for potentials V (x, t) velocity-independent (A study to determine whether the
non-maximality of the action of a given system is minimum or saddle was made by Gray and Taylor
in Ref. 8 and involves the lenghts of the world lines and, in some cases, higher order derivatives.).

II. CALCULUS OF VARIATIONS AND MECHANICS

We consider the vector spaceV = C2([0, T ];R) of functions x : [0, T ] → R twice continuously
differenciable (laterally in the extrems 0 and T < ∞) and F ⊂ V ,

F = {x ∈ V | x(0) = x0, x(T ) = xT fixed in R}.
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Let be the functional A : F → R defined, for each x ∈ F , by

A[x] =
∫ T

0
L(x(t), ẋ(t), t)dt (1)

where L : D × [0, T ] → R, D ⊂ R2, is a C2 function (e.g. the lagrangian of a particle moving in the
X-axis) and ẋ(t) is the derivative of x in t. Then following the same line of reasoning of the Ref. 10
(see also13–16), we have the Taylor expansion

A[x + ξ ] = A[x] + 1

1!
Dξ A[x] + 1

2!
D2

ξ A[x] + E[ξ ] (2)

with ξ ∈ V , not identically null, such that ξ (0) = ξ (T) = 0 (because x + ξ ∈ F for the expression
A[x + ξ ] makes sense; we say that ξ is admissible) and

lim
ξ �→0

E[ξ ]

||ξ ||2 = 0. (3)

Some remarks:

� V is normed space with norm || · || induced of the inner product 〈x, y〉 = ∫
[0, T]x(t)y(t)dt defined

for each (x, y) ∈ V2: ||ξ || = √〈ξ, ξ 〉 (it also has the induced metric of the norm: d(x, y) = ||x
− y||).

� The directional (functional) derivative Dξ A[x] is defined by (see e.g. in the appendix of17)

Dξ A[x] = d

dε
{A[x + εξ ]}

∣∣∣∣
ε=0

=

= d

dε

[∫ T

0
L(x(t) + εξ (t), ẋ(t) + εξ̇ (t), t)dt

]
ε=0

(4)

and, by derivation under integration simbol, using the chain rule and integrating by parts (with
boundary conditions ξ (0) = ξ (T) = 0), we have

Dξ A[x] =
∫ T

0

(
∂L

∂x
ξ + ∂L

∂ ẋ
ξ̇

)
dt

=
∫ T

0

[
∂L

∂x
− d

dt

(
∂L

∂ ẋ

)]
ξdt. (5)

� When A is the action of the particle and x satisfies the Hamilton principle of the stationary (or
critical) action,9 that is Dξ A[x] = 0 for all ξ admissible, then we have the equation of motion
of Euler-Lagrange

∂L

∂x
− d

dt

(
∂L

∂ ẋ

)
= 0. (6)

� The directional (functional) derivative of the second order, D2
ξ A[x] is

D2
ξ A[x] = Dξ {Dξ A[x]} = d

dε
{Dξ A[x + εξ ]}

∣∣∣∣
ε=0

(7)

and then

D2
ξ A[x] =

∫ T

0

(
∂2L

∂x2
ξ 2 + 2

∂2L

∂x∂ ẋ
ξ ξ̇ + ∂2L

∂ ẋ2
ξ̇ 2

)
dt (8)

and so on for functional derivative of high order.



032141-3 W. Freire and J. P. N. Lima AIP Advances 2, 032141 (2012)

� For the classical Lagrangian with velocity-independent potential, L = mẋ2/2 + V (x, t), we
have

D2
ξ A[x] =

∫ T

0

[
−∂2V

∂x2
ξ 2 + mξ̇ 2

]
dt. (9)

� If Dξ A[x] = 0 ∀ ξ admissible (Euler-Lagrange) then the Eq. (2) takes the form

A[x + ξ ] = A[x] + 1

2!
D2

ξ A[x] + E(ξ ), with lim
ξ �→0

E[ξ ]

||ξ ||2 = 0, (10)

such that to determine if x is saddle or extremum local of A we can analize, whenever possible,
the behavior of the second derivative D2

ξ A[x].
� We say that x ∈ F is a point of maximum local of A : F → R if there is a neighborhood of x,

we say Br (x) = {y ∈ F ; ||y − x || < r} (centered on x and of radius r), such that A[x] ≥ A[x
+ ξ ] for all x + ξ ∈ Br(x); analogously for x to be of minimum local, A[x] ≥ A[x + ξ ] is replaced
by A[x] ≤ A[x + ξ ]; if x is not point of maximum neither minimum, it is a saddle point of A
(under the boundary conditions x(0) = x(T) = 0 a solution x of the Euler-Lagrange equation
may be the unique, and therefore the “global critical point” of A, by theorem of existence
and uniqueness for ordinary differential equation). Sometimes is convenient write, with ξ not
identically null,

ξ = ||ξ ||η where η = ξ

||ξ || is unitary (normalized).

and by using Eq. (8), considering that ||ξ ||(= 〈ξ , ξ 〉1/2) is constant, we say equal to ε, we have
D2

ξ A[x] = ||ξ ||2 D2
η A[x] = ε2 D2

η A[x] and then the signs of D2
ξ A[x] and D2

η A[x] are the same
and, furthermore, we have

A[x + ξ ] = A[x] + 1

2!
||ξ ||2

{
D2

η A[x] + E[ξ ]

||ξ ||2
}

, (11)

that is,

A[x + εη] = A[x] + 1

2!
ε2

{
D2

η A[x] + R[ε]

ε2

}
, (12)

in which E[ξ ] = E[εη] ≡ R[ε] �→ 0 more rapidly that ε2, when ε = ||ξ ||�→0.

III. PROOF OF NON-MAXIMALITY OF THE ACTION FOR VELOCITY-INDEPENDENT
POTENTIALS

Initially we present the following lemma.

Lemma: If x is point of maximum (respectively minimum) of A then D2
ξ A[x] is non-positive

(respectively non-negative), that is, D2
ξ A[x] � 0 (respectively D2

ξ A[x] � 0) for all admissible ξ .
Proof: We suppose that x is a point (actually, a function) maximizing A (the case for a minimum

is analogous, Ref. 13). If D2
ξ A[x] � 0 ∀ξ does not occur then D2

ξ A[x] > 0 for a ξ with ||ξ ||
sufficiently small and then from Eq. (10) or Eq. (11), it follows that A[x + ξ ] > A[x] since E[ξ ] �→ 0
more rapidly that ||ξ ||2 �→ 0 whenever ξ �→ 0 and then x is not point of maximum of A, contradition.

Considering the above lemma, we have
Theorem: Let be F = {x ∈ C2([0, T ];R)|x(0) = x0, x(T ) = xT } and A : F → R defined by

A[x] =
∫ T

0

[
1

2
mẋ2 − V (x, t)

]
dt, x ∈ F ,

where V : R × [0, T ] → R, R ⊂ R, is C2. If x ∈ F is stationary point of A, in other words Dξ A[x]
= 0 for all ξ ∈ C2([0, T ];R) such that ξ (0) = ξ (T) = 0 (ξ admissible), that is if x satisfies Hamilton’s
principle, then x can not to maximize A.
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Proof: If x to maximize A then, by lemma, D2
ξ A[x] � 0 for all ξ admissible. Thence by (9)

∫ T

0

[
−∂2V

∂x2
ξ 2 + mξ̇ 2

]
dt � 0, ∀ ξ admissible.

Therefore, there must exist a proper subset I ≡ [a, b] ⊂ [0, T] such that [∂2
x V (x(t), t)][ξ (t)]2

� m[ξ̇ (t)]2, t ∈ I. As V (x(t), t) is C2 in I = [a, b], it follows from Weierstrass’s theorem (Ref.
18, page 80), that exists M ∈ R (M > 0) such that ∂2

x V (x(t), t) � M for all t ∈ I; in particular for
all t ∈ I such that ξ (t) �= 0 (ξ admissible) we have

m

[
ξ̇ (t)

ξ (t)

]2

� ∂2V

∂x2

∣∣∣∣
(x(t),t)

� M. (13)

We choose ξ (t) = t(T − t)(et − ea) (C2 and ξ (0) = ξ (T) = 0) and then

lim
t �→a

[
ξ̇ (t)

ξ (t)

]2

= lim
t �→a

(
1

t
− 1

T − t
+ ea

et − ea

)2

= +∞

which contradicts (13). �
This theorem is also valid for n degrees of freedom (n ∈ N ≡ {1, 2, 3, ...}). In this case the

approach and the proof requires simple modifications. Now we consider functions x : [0; T ] → Rn

(paths in Rn) and the (C2) Lagrangian L : D × [0, T ] → R, D ⊂ R2n ,

L(x, ẋ, t) =
n∑

l=1

(ml ẋl)/2 − V (x, t).

The Eq. (9) becames

D2
ξ A[x] =

n∑
l=1

∫ T

0

[
−∂2V

∂x2
l

ξ 2
l + ml ξ̇

2
l

]
dt. (14)

Is not difficult to see that if x maximizes A (reductio ad absurdum) we obtain, by similar arguments,
an inequali-ty similar to (13):

ml

[
ξ̇l(t)

ξl(t)

]2

� ∂2V

∂x2
l

∣∣∣∣
(x(t),t)

� M (15)

for some l ∈ 1, 2, ..., n. The remainder of the proof is the same.

IV. CONCLUSION

As already commented in the introduction, the Ref. 10 by one of the authors presented examples
where the action is maximum, minimum or saddle for velocity-dependent potentials. Gray, Taylor
and Morin (Refs. already mentioned) showed how the action can be minimum or saddle for velocity-
independent potentials. However, the intuitive proof presented by them for non-maximality of
the action functional for velocity-independent potentials was “transformed” in our work into a
(mathematically) rigorous proof by using the functional derivative of second order. Studies involving
functional derivative of second order in the case of continuous systems and fields, with infinite non-
enumerable degrees of freedom (Lagrangian densities, signature of the metric etc.), would merit a
separate discussion.
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