

UNIVERSIDADE REGIONAL DO CARIRI - URCA CENTRO DE CIÊNCIAS BIOLÓGICAS E DA SAÚDE - CCBS PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA BIOLÓGICA -PPQB

MAURO MACEDO DE OLIVEIRA

DERIVADOS DA DIBENZALACETONA COMO POTENCIAIS AGENTES CITOTÓXICOS, ANSIOLÍTICOS E REVERSORES DA RESISTÊNCIA BACTERIANA: ENSAIOS *IN SILICO*, BIOLÓGICOS E ESPECTROSCÓPICOS.

Crato 2021

MAURO MACEDO DE OLIVEIRA

DERIVADOS DA DIBENZALACETONA COMO POTENCIAIS AGENTES CITOTÓXICOS, ANSIOLÍTICOS E REVERSORES DA RESISTÊNCIA BACTERIANA: ENSAIOS *IN SILICO*, BIOLÓGICOS E ESPECTROSCÓPICOS.

Tese apresentada ao Programa de Pós-Graduação em Química Biológica, da Universidade Regional do Cariri, como requisito parcial para obtenção do Título de Doutor em Química Biológica.

Orientador: Prof. Dr. Carlos Emídio Sampaio Nogueira

Crato 2021

MAURO MACEDO DE OLIVEIRA

DERIVADOS DA DIBENZALACETONA COMO POTENCIAIS AGENTES CITOTÓXICOS, ANSIOLÍTICOS E REVERSORES DA RESISTÊNCIA BACTERIANA: ENSAIOS *IN SILICO*, BIOLÓGICOS E ESPECTROSCÓPICOS.

Tese apresentada ao Programa de Pós-Graduação em Química Biológica, da Universidade Regional do Cariri, como requisito parcial para obtenção do Título de Doutor em Química Biológica.

Tese defendida e aprovada em 10/09/2021.

Banca examinadora:

Prof. Dr. Carlos Emídio Sampaio Nogueira Orientador URCA

Aloxander (Wagno Rodrigans Feixeir-

Prof. Dr. Alexandre Magno Rodrigues Teixeira URCA

2 / let

Prof. Dr. Henrique Douglas Melo Coutinho URCA

Humberto Medeiros Barreto

Prof. Dr. Humberto Medeiros Barreto UFPI

Francisco Jerreira de Sausa

Prof. Dr. Francisco Ferreira de Sousa UFPA

Primeiramente a Deus, por todas as graças que me tem dado e pela força que me dá nos momentos difíceis.

À minha esposa, Erine, companheira de todas as horas, que não me deixa desistir nunca.

Aos meus filhos, Nicolas e Mateus, pois eles são a razão da minha vida

Aos meus pais, pelo esforço de terem me proporcionado a educação para chegar até aqui.

AGRADECIMENTO

Este trabalho representa a conclusão de mais uma etapa, gratificante e exaustiva, porém denota o recebimento de um dom: a autodisciplina. Foi com muito esforço e dedicação que consegui realizar esse objetivo, contudo sem a presença e o auxílio de alguns, este êxito não teria sido alcançado, por isso quero expressar reconhecidamente minha gratidão.

A Deus por sua infinita bondade e sabedoria, e por me proporcionar saúde e força nos momentos em que quis desanimar. Por ser onipotente, onisciente e onipresente, e assim nunca me desamparar.

À minha esposa, Erine Dantas Bezerra, que sempre me incentivou e me ajudou nos momentos de desânimo. Pelos seus conselhos e apoio na elaboração deste trabalho, pela sua disponibilidade incondicional, pelo seu carinho, apoio e cooperação. Minha eterna gratidão. Amo-te.

Aos meus filhos, Nicolas e Mateus, pela compreensão nos momentos ausência em que eu precisava "estudar para o doutorado". Vocês sempre compreenderam e colaboraram muito para que eu conseguisse cumprir com minhas obrigações.

A todos os professores do doutorado em Química Biológica da Universidade Regional do Cariri - URCA, pela troca de experiência e aprendizado mútuo.

Pela dedicação, orientação e muitos ensinamentos, agradeço ao meu orientador que demonstrou ter uma enorme paciência para atender às minhas múltiplas questões.

A todos os meus colegas de turma do doutorado, em especial aos que me ajudaram nos experimentos laboratoriais, pela parceria, amizade, troca de experiências e pelos papos descontraídos.

Enfim, aos meus pais, pelo amor incondicional, por me fornecerem todas as condições para que eu pudesse estudar e por nunca terem permitido que eu pensasse sequer em desistir.

Se me esqueci de alguém, eu peço desculpa. A verdade é que me sinto tão feliz neste momento que agradeceria até a quem um dia me provocou e fez mal. Na verdade, até essas pessoas me ajudaram a crescer.

"O sucesso é ir de fracasso em fracasso sem perder o entusiasmo.". Autor desconhecido

RESUMO

Várias doenças têm causado preocupação por todo o mundo, em especial o câncer, infecções por organismos resistentes a múltiplas drogas e desordens relacionadas à ansiedade. Por isso a busca por novos compostos bioativos tem motivado os cientistas. Nesse contexto destaca-se a classe de compostos denominada de chalconas e seus derivados, dentre os quais os análogos da dibenzalacetona. Compostos orgânicos formados por duas regiões reativas a e a' que promovem uma grande deslocalização dos elétrons π , chamam atenção por suas atividades biológicas. Neste trabalho nós sintetizamos três derivados da dibenzalacetona, (1E, 4E)-1,5di(tiofen-2-il)penta-1,4-dien-3-ona, (1E,4E)-1,5-bis(4-etoxifenil)penta-1,4-dien-3-ona e (1E,4E)-1,5-bis(4-clorofenil)penta-1,4-dien-3-ona, denominados por DB tiofeno, DB etoxi e DB cloro, respectivamente. Aqui é reportado a caracterização espectroscópica das três moléculas bem como suas atribuições vibracionais em que se utilizou a Teoria do Funcional de Densidade (DFT) com o funcional de correlação de troca B3LYP. Em testes preliminares, o DB tiofeno e o DB cloro apontaram para uma provável atividade citotóxica contra células tumorais de cólon HCT-116, a primeira ainda indicou atividade moderada contra a linhagem de câncer de próstata PC3 e a segunda, baixa atividade contra essa mesma linhagem. Ensaios de modulação da resistência aos antibióticos em cepas multirresistentes de S. aureus (1199B e K2068) revelaram que os três compostos foram capazes de inibir o efluxo do substrato EtBr pela bomba de efluxo NorA (redução da CIM em 29,3%, 37,0% e 37,0%, respectivamente), enquanto apenas o DB tiofeno e o DB cloro inibiram o efluxo de EtBr mediado pela MepA (redução da CIM em 43,9% e 37,0%), demostrando que são potenciais inibidores dessas bombas de efluxo. Ainda, o DB tiofeno exibiu uma notável capacidade de inibir o efluxo de norfloxacino mediado pela NorA em quase 30,0%, e de ciprofloxacino mediado pela MepA pela metade, colocando-se como um provável candidato a adjuvante para esses antibióticos. Estudos de docagem molecular indicaram que a ação inibidora das bombas de efluxo pelos derivados da dibenzalacetona ocorre provavelmente por competição ao mesmo sítio de ligação dos antibióticos. DB tiofeno e DB cloro também provocaram deficiência motora em zebrafish (Danio rerio), o que sugere que esses compostos promoveram um efeito sedativo. Por outro lado, a não alteração da atividade locomotora pelo DB etoxi pode indicar potencial ação antinociceptiva. Foi demonstrado que esse efeito sedativo se deu através da atividade ansiolítica semelhante aos benzodiazepínicos com mecanismo de ação GABAérgica. Ademais, testes in silico de semelhança com drogas sugeriram bom potencial dos referidos compostos para uso como medicação oral.

Palavras-Chave: Dibenzalacetona, Inibidores de bomba de efluxo, Ansiolítico, Citotoxicidade, Espectroscopia vibracional, Docagem.

ABSTRACT

Several illnesses have caused concern around the world, in particular cancer, infections by multidrug-resistant strains and anxiety disorders. That is why the search for new bioactive compounds has motivated scientists. In this context, the class of compounds denominated as chalcones and their derivatives stands out, among which are the dibenzalacetone derivatives. Organic compounds formed by two α and α' reactive regions that provide a large relocation of π -electrons, call attention for their biological activities. In this work, we synthesized three dibenzalacetone derivatives, (1E,4E)-1,5-di(thiophen-2-yl)penta-1,4-dien-3-one, (1E,4E)-1,5bis(4-ethoxyphenyl)penta-1, 4-dien-3-one and (1E,4E)-1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one, named by DB thiophene, DB ethoxy and DB chlorine, respectively. Here the spectroscopic characterization of the three molecules is reported, as well as their vibrational attributions using the Density Functional Theory (DFT) with the B3LYP exchange correlation functional. In preliminary assays, DB thiophene and DB chlorine displayed cytotoxic activity against colon tumor cells HCT-116, the first one still indicated moderate activity against the PC3 prostate cancer lineage and the second one, low activity against this same lineage. Antibiotic resistance modulation assays using multiresistant strains of S. aureus (1199B and K2068) revealed that the three compounds were able to inhibit the EtBr efflux by NorA efflux pump (MIC reduction by 29.3%, 37.0% and 37.0%, respectively), while only DB thiophene and DB chlorine inhibited MepA-mediated EtBr efflux (MIC reduction by 43.9% and 37.0%), demonstrating that they are potential inhibitors of these efflux pumps. In addition, DB thiophene exhibited a remarkable ability to inhibit NorA-mediated norfloxacin efflux (MIC reduction by 30.0%) and MepA-mediated ciprofloxacin (MIC reduction by half), posing itself as a likely adjuvant candidate for these antibiotics. Molecular docking studies indicated that the inhibitory action of efflux pumps by dibenzalacetone derivatives probably occurs by competition at the same binding site as the substrates. DB thiophene and DB chlorine also caused motor impairment in zebrafish (Danio rerio), which suggests that these compounds provide a sedative effect. On the other hand, the non-alteration of locomotor activity by DB ethoxy may indicate potential antinociceptive action. This sedative effect was shown to occur through benzodiazepine-like anxiolytic activity with a GABAergic mechanism of action.

Keywords: Dibenzalacetone, Efflux pump inhibitors, Anxiolytic, Cytotoxicity, Vibrational spectroscopy, Docking.

Furthermore, in silico drug-likeness test suggested good potential of said compounds as oral

medication.

LISTA DE FIGURAS

Figura 1. Esqueleto estrutural comum das chalconas cis e trans com numeração dos	26
r = 2 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 1	20
Figura 2. Condensação de Claisen-Scrimidi de chaiconas	21
diferentes condiçãos e diversos estelinadores de reládio relatados non Edderin et el (2002)	20
diferentes condições e diversos catalizadores de paladio relatadas por Eddarir et al. (2003).	28
Figura 4. Sintese de chaiconas atraves do acopiamento de Heck	29
Figura 5. Reação de Wittig para sintese de chalcona	29
Figura 6. Olefinação Julia–Kocienski para sintese de chalconas	30
Figura 7. Sintese de chalconas pelas reações Friedel-Crafts e Photo-Fries	30
Figura 8. Mecanismo de reação para sintese dos derivados da dibenzalacetona utilizando	
catalisador básico. (D) normalmente é um anel aromático substituído ou nao, ou um anel	~~
heterociclico	32
Figura 9. Principais atividades biológicas identificadas em chalconas e seus derivados	34
Figura 10. Efluxo de múltiplas drogas por meio do mecanismo de antiporta H+/droga	
encontrado em bombas de efluxo do tipo MFS. Adaptado de Zárate et al. (2019)	41
Figura 11. Regiões aproximadas em que alguns tipos de ligações químicas absorvem no	
IV e produzem estiramentos. Adaptado de Pavia et al. (2010)	46
Figura 12. Exemplos de modos vibracionais de estiramento e dobramento de um grupo	
CH_2 e torção de um grupo C-C-C-C. Os sinais + e – indicam movimentos perpendiculares	
ao plano do papel. Adaptado de Yadav (2013)	48
Figura 13. Diagrama dos processos de espalhamento Rayleigh e Raman. Adaptado de	
Smith e Dent (2005)	49
Figura 14. Método de campo autoconsistente iterativo para determinação da energia e	
propriedades de um sistema eletrônico. Adaptado de Morgon e Custodio (1995)	55
CAPITULO 2	
Figure 1. (a) ¹ H-NMR Spectrum of DB thiophene (b) ¹³ C-NMR Spectrum of DB	_
thiophene	87
Figure 2. Representation of the three conformers of DB thiophene	88
Figure 3. Raman (a) and IR (b) spectra of DB thiophene	91
Figure 4. (a) MIC of Norfloxacin and EtBr, in association with the standard inhibitors and	
in association with DB thiophene against the strain S. aureus 1199B. ^{a1,a2} p<0.0001 vs	
control, ^{b1,b2} p<0.0001 vs CPZ, ^{c1,c2} p<0.0001 vs CCCP. (b) MIC of Ciprofloxacin and EtBr,	
in association with the standard inhibitors and in association with DB thiophene against	
the strain S. aureus K2068. ^{a1,a2p} < 0.0001 vs control, ^{b1,b2} p< 0.0001 vs CPZ, ^{c1,c2} p< 0.0001	
vs CCCP (bottom)	93
Figure 5. (a) The best five poses of DB thiophene (green) and the best pose of norfloxacin	
(blue) on the binding site of the NorA model. Regions on the binding site are marked 1	
and 2. (b) 2D ligand-protein interaction diagram of DB thiophene and the NorA model on	
regions 1 and 2	95
Figure S1. Chromatogram of DB thiophene	108
Figure S2. ESIMS of DB thiophene	109
Figure S3. Raman spectra of DB thiophene higher than 2000 cm ⁻¹	109
Figure S4. IR spectra of DB thiophene higher than 2000 cm ⁻¹	110
CAPÍTULO 3	
Figure 1. Linear fitting for the NMR spectroscopic experimental and theoretical data for	
the (a) DB ethoxy and (b) DB chlorine molecules	121

Figure 2. Experimetal IR (a) and Raman (b) spectra of DB ethoxy and DB chlorine	124
Figure 3. Optimized structure (in vacuum) of trihydrated model of DB ethoxy (a) and DB	
chlorine (b) with nomenclature used for the PED analysis	129
Figure 4. Cytotoxicity of the chalcones DB chlorine and DB ethoxy at a single	
concentration (10 μ M) against HCT-116 and PC3 cells after 72 h of incubation using MTT	
assay. *** p<0.001, ns p>0.05 (not significant)	131
Figure S1. ¹ H NMR spectrum (CDCl ₃ , 300 MHz) of DB ethoxy	140
Figure S2. Expansion of ¹ H NMR spectrum (CDCl ₃ , 300 MHz) of DB ethoxy	140
Figure S3. Expansion of ¹ H NMR spectrum (CDCl ₃ , 300 MHz) of DB ethoxy	141
Figure S4. ¹³ C NMR spectrum (CDCl ₃ , 125 MHz) of DB ethoxy	141
Figure S5. ¹ H NMR spectrum (CDCl ₃ , 300 MHz) of DB chlorine	142
Figure S6. Expansion of ¹ H NMR spectrum (CDCl ₃ , 300 MHz) of DB chlorine	142
Figure S7. ¹³ C NMR spectrum (CDCl ₃ , 125 MHz) of DB chlorine	143
Figure S8. Expansion of ¹³ C NMR spectrum (CDCl ₃ , 125 MHz) of DB chlorine	143
Figure S9. Experimental IR spectra of DB ethoxy after dehydration	144
Figure S10. Comparison of the Raman calculated spectra of different DB ethoxy models	
along with the experimental spectrum for the trihydrated crystal in the 200 to 3450 cm ⁻¹	
range	144
Figure S11. Comparison of the infrared calculated spectra of different DB ethoxy models	
along with the experimental spectrum for the trihydrated crystal in the 600 to 4000 cm ⁻¹	
range	145
Figure S12. Comparison of the Raman calculated spectra of DB chlorine model along	
with the experimental spectrum for the crystal in the 200 to 3450 cm ⁻¹ range	145
Figure S13. Comparison of the infrared calculated spectra of DB chlorine model along	
with the experimental spectrum for the crystal in the 600 to 4000 cm ⁻¹ range	146
Figure S14. Mass spectra of DB chlorine	146
Figure S15. Mass spectra of DB ethoxy	146
Figure S16. Dual scaling factors for DB ethoxy anhydrous, DB ethoxy monohydrated, DB	
ethoxy trihydrated models and DB chlorine	147
CAPITULO 4	
Figure 1. DB ethoxy, DB chlorine and DB thiophene molecular structures	162
Figure 2. Effect of bis-chalcones DB ethoxy (A), DB chlorine (B) and DB thiophene (C)	
under the locomotor activity of the adult zebrafish (Danio rerio) in the Open Field Test (0	
- 5min). Naive - untreated animals. DZP - diazepam (4 mg/kg; 20 µL; i.p.). Vehicle - 3%	
DMSO (20 μ L; i.p.). The values represent the mean \pm standard error of the mean (SEM)	
for 6 animals/group. ANOVA followed by Tukey test (*p<0.05; ***p<0.001; ****p<	
0.0001 vs. Naive; (# #p< 0.01 ; # # # #p< $0.0001 vs. Vehicle$)	171
Figure 3. Anxiolytic-like effect of bis-chalcones DB chlorine (A) and DB thiophene (B)	
on adult zebrafish (Danio rerio) in the Light & Dark Test (0-5min). Naive - untreated	
animals. Vehicle – 3% DMSO (20 μ L; 1.p.). DZP – Diazepam (4 mg/kg; 20 μ L; 1.p.). The	
values represent the mean \pm standard error of the mean (SEM) for 6 animals/group.	
ANOVA followed by Tukey test (**** $p < 0.0001$ vs. Naive or Vehicle); (# # # $p < 0.0001$	
vs. DZP). The numbers above each column indicate percentage of the permanence in the	170
$\mathbf{\Sigma} = \mathbf{A} \cdot \mathbf{M} + \mathbf{A} \cdot \mathbf{M} + \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} + \mathbf{A} \cdot $	1/2
Figure 4. Mechanism of anxiolytic action of bis-chalcones DB chlorine (A) and DB	
uniopinene (B) on adult zebrarisn (Danio rerio) in the Light & Dark Test (0-5min). Naive -	
uniteated animals. venicle -3% DMSO (20 µL; 1.p.). DZP $-$ Diazepam (4 mg/kg; 20 µL; i.p.) EMZ = Elymograpii (4 mg/kg; 20 µL; i.p.). The values represent the mass is starting in the	
1.p. <i>j</i> . FIVIZ – FIUITAZETTI (4 mg/kg; 20 μ L; 1.p. <i>j</i> . The values represent the mean ± standard	
choi of the mean (SEW) for 0 annuals/group. ANOVA followed by Tukey lest (***** p < 0.0001 vs. Navya or Vabiala); (# # # $p < 0.001$ vs. DD ablamas: # # # # $p < 0.0001$ vs. DZD ar	174
0.0001 vs. marve of vehicle, (# # #p< 0.001 vs. DB chlorine; # # # #p< 0.0001 vs. DZP of	1/4

DB thiophene). The numbers above each column indicate percentage of the permanence	
in the clear zone (PCZ)	
Figure 5. NorA (A) and MepA (B) homology models in outward face conformation. The	
colored spheres represent the side chain of the residues	176
Figure 6. Interactions between EtBr (A), DB thiophene (B), DB chlorine (C) and DB	
ethoxy (D) in their best poses with NorA protein model	177
Figure 7. Interactions between EtBr (A), DB chlorine (B) and DB thiophene (C) in their	
best poses with MepA protein model	178
Figure 8. (A) Norfloxacin binding site in NorA with DB thiophene competition. (B)	
Ciprofloxacin binding site in MepA with DB thiophene competition. (C) 2D ligand-	
protein interaction diagram of DB thiophene (left) and norfloxacin (right) in NorA model.	
(D) 2D ligand-protein interaction diagram of DB thiophene (left) and ciprofloxacin (right)	
in MepA model. All the poses shown have the lowest binding energy.	180
Figure 9. The best pose of DB thiophene (above) and DB chlorine (below) on the	
benzodiazepine site of the GABAA receptor ($\alpha 1-\gamma 2$ interface of the extracellular domain	
- ECD). 2D ligand-protein interaction diagram is on the right	181
Figure S1. Ramachandran plot for NorA homology model	195
Figure S2. Ramachandran plot for MepA homology model	195

LISTA DE ESQUEMAS

Scheme 1. DB thiophene structure and atom numbering along with Curcumin structure	82
Scheme 2. DB thiophene synthesis reaction	83
Scheme S1. Proposed fragmentation of DB thiophene	110
CAPÍTULO 3	
Scheme 1. DB ethoxy and DB chlorine synthesis reaction	116
Scheme 2. Proposed fragmentation of dibenzalacetone derivative DB ethoxy	122
Scheme 3. Proposed fragmentation of dibenzalacetone derivative DB chlorine	122

LISTA DE TABELAS

Table 1. Observed (Raman and Infrared) and calculated vibrational wavenumbers (cm ⁻¹)	
for DB thiophene (C1)	89
Table S1. Calculated vibrational wavenumbers (in cm-1) unscaled and scaled by the scale	
factor 0.9600 (ω <2000) and 0.942 (ω ≥2000), experimental Raman and infrared bands	104
positions in units of cm-1 and assignment of vibrational modes for DB thiophene C0	104
Table S2. Calculated vibrational wavenumbers (in cm-1) unscaled and scaled by the scale $1 + 0.000$ ($1 - 2000$) $1 + 0.042$ ($2 - 2000$)	
factor 0.9600 (ω <2000) and 0.942 (ω ≥2000), experimental Raman and infrared bands	105
positions in units of cm-1 and assignment of vibrational modes for DB thiophene C1	105
Table S3. Calculated vibrational wavenumbers (in cm-1) unscaled and scaled by the scale	
factor 0.9600 (ω <2000) and 0.942 (ω ≥2000), experimental Raman and infrared bands	107
positions in units of cm-1 and assignment of vibrational modes for DB thiophene C2	107
Table 1. NMR spectroscopic experimental and theoretical data for DB ethoxy and DB	100
chlorine (¹ H: 300MHz; ¹⁵ C: 125 MHz; in CDCl ₃)	120
Table 2. Observed Raman and IR band positions (cm ⁻¹), calculated (scaled) vibrational	105
wavenumbers (cm ⁻¹) and assignments for the DB ethoxy trihydrated model	125
Table 3. Observed Raman and IR band positions (cm ⁻¹), calculated (scaled) vibrational	107
wavenumbers (cm ⁻¹) and assignments for the DB chlorine	127
Table 4. In silico Physicochemical, lipophilicity, Drug-likeness and pharmacokinetics	100
The of DB ethoxy and DB chlorine	132
Table S1. Calculated vibrational wavenumbers (in cm ⁻¹) unscaled and scaled by the scale $1 + 0.0716$ (-1000) $1 + 0.0440$ (> 1000)	
factor 0.9/16 (ω <1800) and 0.9449 (ω ≥1800), experimental Raman and infrared bands	
positions in units of cm ⁻ and assignment of vibrational modes for DB ethoxy in annydro	1 47
model.	14/
Table S2. Calculated vibrational wavenumbers (in cm ⁻¹) unscaled and scaled by the scale factor 0.0702 ($0 \le 1800$) and 0.0440 ($0 \ge 1800$), superimental Remon and infrared hands	
factor 0.9702 ($\omega < 1800$) and 0.9440 ($\omega \ge 1800$), experimental Raman and infrared bands	
positions in units of cm ⁻ and assignment of vibrational modes for DB etnoxy in a	150
Table S2. Calculated with rational wavenumbers (in cm ⁻¹) unscaled and calculated by the scale	150
factor 0.0604 (a<1800) and 0.0420 (a>1800) avantimental Reman and infrared hands	
factor 0.9094 (ω <1800) and 0.9450 (ω <1800), experimental Raman and initiated bands	
tribudrated model	152
Table S4. Calculated wibrational wavanumbers (in cm^{-1}) unscaled and scaled by the scale	132
factor 0.0712 ($\infty < 1800$) and 0.0476 ($\infty > 1800$) experimental Raman and infrared bands	
positions in units of cm^{-1} and assignment of vibrational modes for DB chlorine	155
CAPÍTULOA	155
Table 1 Cytotoxicity of his-chalcones at a single concentration (10 µM) against HCT.	
116 SNB and PC3 cells after 72 h of incubation using MTT assay	167
Table 2 Modulating effect of his-chalcones Chlorpromazine (CPZ) and Carbonyl	107
cvanide 3-chlorophenylhydrazone (CCCP) on the resistance to Ethidium Bromide in the	
<i>S. aureus</i> SA1199B (<i>norA</i>) and K2068 (<i>mepA</i>) strains	168
Table 3. Acute toxicity test of bis-chalcones in aZF	169
Table 4. Interaction sites and binding energy between the compounds in the best pose	- 07
and the proteins of the efflux pumps	176
· · · · ·	

LISTA DE ABREVIATURAS E SIGLAS

- RMN Ressonância magnética nuclear
- EM Espectroscopia de massa
- IV-In fraver melho
- DFT Teoria do Funcional da Densidade
- CIM Concentração inibitória mínima
- CLSI Instituto de padrões clínicos e laboratoriais
- MTT Brometo de 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazólio
- DNA Ácido desoxirribonucleico
- ATP Trifosfato de adenosina
- AGS Adenocarcinoma gástrico
- IC₅₀ Concentração inibitória de 50%
- FASII Via biossintética de ácidos graxos II
- FtsZ Proteína bacteriana envolvida na divisão celular
- PTP Proteínas tirosina fosfatases
- PTK Proteínas tirosina quinases
- MSF Superfamília dos facilitadores majoritários
- SMR Pequena família de resistência a múltiplas drogas
- MATE Família de extrusão de multidrogas e compostos tóxicos
- RND Família resistência à nodulação celular
- ABC Superfamília de cassetes de ligação de ATP
- NorA Proteína de efluxo de múltiplas drogas contida em linhagens de S. aureus
- MepA Proteína de efluxo de múltiplas drogas contida em linhagens de S. aureus
- EtBr Brometo de etídio
- norA Gene que codifica a proteína NorA
- mepA Gene que codifica a proteína MepA
- Tet(A) Proteína de efluxo de tretraciclina contida em linhagens de E. coli
- Bmr Proteína de efluxo de múltiplas drogas contida em linhagens de B. subtilis
- NOR Norfloxacino
- CIP Ciprofloxacino
- CPZ Clorpromazina
- CCCP Carbonil cianeto m-clorofenilhidrazona
- EPI Inibidor de bomba de efluxo

- GABAA Receptor do ácido y-aminobutírico A
- nAChRs Receptores de acetilcolina nicotínica
- 5HT3 Receptores de serotonina
- GlyR Receptores de glicina
- BDzs Banzodiazepínicos
- FT Transformada de Fourier
- AG Algoritmo genético
- AGL Algoritmo genético lamarckiano
- SVM Máquina de vetor de suporte
- RF Floresta aleatória
- ANN Rede neural artificial
- DL Aprendizagem profunda

SUMÁRIO

INTRODUÇÃO GERAL	18
OBJETIVOS E QUESTIOAMENTOS	20
ESTRATÉGIA DE PESQUISA	21
ESTRUTURA DA TESE	23
CAPÍTULO 1	
1. FUNDAMENTAÇÃO TEÓRICA	26
1.1. CHALCONAS	26
1.1.1. Síntese química das chalconas	26
1.1.1.1. Condensação de Claisen-Schmidt	27
1.1.1.2.Reações de acoplamento cruzado	27
1.1.1.2.1. Acoplamento de Suzuki	27
1.1.1.2.2. Acoplamento de Heck	28
1.1.1.2.3. Reação de Wittig	29
1.1.1.2.4. Olefinação de Julia-Kocienski	29
1.1.1.3. Outras estratégias para síntese de chalconas	30
1.2. DERIVADOS DA DIBENZALACETONA	30
1.3. ALGUMAS PROPRIEDADES DAS CHALCONAS E DERIVADOS	32
1.4. ATIVIDADES BIOLOGICAS DAS CHALCONAS E DERIVADOS	33
1.4.1. Atividade anticâncer	33
1.4.2. Atividade antibacteriana	36
1.4.2.1. Inibição da via biossintética de ácidos graxos tipo II (FASII)	37
1.4.2.2. Inibição da replicação do DNA bacteriano	38
1.4.2.3. Inibição da proteína FtsZ	38
1.4.2.4. Inibição do fator de virulência	39
1.4.2.5. Inibição das proteínas tirosina fosfatases (PTP)	39
1.4.2.6. Inibição das bombas de efluxo	40
1.4.2.6.1. NorA	41
1.4.2.6.2. MepA	42
1.4.3. Atividade ansiolítica	42
1.5. ESPECTROSCOPIA MOLECULAR	43
1.5.1. Espectroscopia vibracional	43
1.5.1.1. Espectroscopia no infravermelho (IV)	45
1.5.1.2. Espectroscopia Raman	48
1.5.2. Espectroscopia de ressonância magnética nuclear (RMN)	50
1.5.3. Espectroscopia de massa (EM).	51
1.6. CALCULOS COMPUTACIONAIS	52
1.6.1. Teoria do Funcional da Densidade (DF1)	52
1.6.2. Docagem molecular.	56
	60
CAPITULO 2 Artice original "Superturgeonic Characterization and Efflux Duma Medulation of a	
Artigo original Spectroscopic Characterization and Efficient Pump Modulation of a	70
Sumlementers Meterial	102
CAPÍTULO 3	103
Artigo original "Full Spectroscopic Characterization and Cytotoxicity Activity of Synthetic Dibenzalacetone Derivatives"	112
Supplementary Material	139

Artigo original "Cytotoxicity Activity, Efflux Pump Inhibition, Anxiolytic-Like Effect	
and Molecular Docking Studies of Synthetic Bis-chalcones" 15	58
Supplementary Material 19	94
CAPÍTULO 5	
5. CONSIDERAÇÕES FINAIS 19	97
5.1. DISCUSSÃO GERAL	97
5.2. CONCLUSÕES GERAIS	9 9
5.3. PERSPECTIVAS DE INVESTIGAÇÕES FUTURAS	9 9
ANEXO A – Certificado do Comitê de Ética para Uso de Animais da Universidade	
Estadual do Ceará (CEUA – UECE)	01
ANEXO B – Perfil físico-químico, lipofílico, farmacocinético e de semelhança com	
drogas do DB tiofeno realizado <i>in silico</i> no SwissADME)2
ANEXO C – Perfil físico-químico, lipofílico, farmacocinético e de semelhança com	
drogas do DB cloro realizado <i>in silico</i> no SwissADME	32
ANEXO D – Perfil físico-químico, lipofílico, farmacocinético e de semelhança com	
drogas do DB etoxi realizado <i>in silico</i> no SwissADME	03
APĚNDICE I – PRODUÇÃO ACADÊMICA (2018 - 2021))4

INTRODUÇÃO GERAL

A preocupação mundial com diversas desordens médicas, tais como câncer (BRAY et al., 2018), infecções resistentes a medicamentos (TACCONELLI; PEZZANI, 2019) e distúrbios relacionados ao sistema nervoso central tal como a ansiedade (LIU et al., 2015), tem motivado cientistas do mundo todo na identificação de novos compostos químicos bioativos. Por outro lado, o processo para desenvolvimento completo de uma droga pode levar muitos anos, é complexo, bastante custoso e geralmente está sujeito a uma enorme pressão por parte das indústrias farmacêuticas bem como dos médicos e pacientes para agilizar esse processo. Por sorte a era pós-genômica propiciou um aumento gigantesco de dados biológicos que, associados ao desenvolvimento da biologia e da química computacional, foram cruciais para uma revolução sem precedentes na química medicinal. Métodos empíricos foram substituídos por abordagens muito mais sofisticadas e multifacetadas, que melhoraram bastante a eficiência na descoberta de medicamentos, resultando em uma aceleração significativa do processo (WU et al., 2019).

As chalconas compreendem uma classe de compostos muito importante na busca por moléculas bioativas pois possuem uma estrutura química privilegiada, de fácil preparo e com um amplo espectro de atividades biológicas. Isto se deve provavelmente pela sua pequena estrutura com uma α,β -insaturação, com muitos hidrogênios substituíveis e por possuírem características de aceitadores de Michael¹, que as tornam tolerantes à diferentes moléculas biológicas permitindo que elas se liguem de forma rápida (RANI et al., 2019; ZHUANG et al., 2017). O amplo espectro das bioatividades das chalconas e seus análogos inclui, por exemplo, atividade anti-inflamatória (CHENG et al., 2008; LI et al., 2017), atividade antimicrobiana (INAMULLAH et al., 2017; UŠJAK et al., 2019), atividade ansiolítica (SALEHI et al., 2021), atividade antioxidante (AOKI et al., 2008; BELSARE et al., 2010), atividade anticâncer e citotóxica (MIRZAEI; KEIGHOBADI; EMAMI, 2017; MODZELEWSKA et al., 2006), atividade antifúngica (ELSOHLY et al., 2001; MOHAMMED; JAMALIS, 2017), atividade antimalárica (DOMÍNGUEZ et al., 2005; YADAV et al., 2012), atividade antiprotozoária (MELLO et al., 2018), atividade antituberculose (UMAA et al., 2013), atividade anticonvulsivante (SIDDIQUI et al., 2010; VERMA; SRIVASTAVA; PANDEY, 2018), atividade antidiabética (EMAYAVARAMBAN et al., 2013), atividade anti-hipertensiva (AVILA-VILLARREAL et al., 2013) etc. A despeito de suas importantes propriedades

¹ Os compostos aceitadores de *Michael* compreendem os eletrófilos e geralmente são biologicamente ativos. A estrutura da chalcona contém um grupo funcional cetona α,β insaturado percebido como um potencial aceitador de Michael.

biológicas, as chalconas também demonstram utilidade em materiais com propriedades óticas não lineares e eletroativos fluorescentes tais como corantes fluorescentes e diodos emissores de luz (NOHUT MAŞLAKCI et al., 2018).

Quando se realiza uma reação de condensação com dois equivalentes de aldeídos em relação a uma cetona que possui duas regiões reativas $\alpha \in \alpha'$, obtém-se derivados que na literatura recebem diferentes denominações, por exemplo, derivados da dibenzalacetona (ARBUZOV et al., 1969; KIRAN et al., 2006; RAJASHEKAR et al., 2012; SANTOS et al., 2020), bis-chalconas (BALE et al., 2018; REDDY et al., 2014; SHETTIGAR et al., 2006), curcuminóides (LIANG et al., 2009) ou simplesmente derivados de chalconas (SALEH, 2017). Essas moléculas apresentam uma porção dienona com uma extensa deslocalização dos elétrons π , o que facilita ainda mais a polarizabilidade desses compostos em relação às chalconas com apenas uma porção enona. Assim como as chalconas simples (com uma porção enona), esses derivados também apresentam características multifuncionais com diversas aplicações médicas e tecnológicas (BALE et al., 2018; NOHUT MAŞLAKCI et al., 2018).

Apesar de extensos estudos do perfil biológico das chalconas ainda existe um grande esforço na obtenção de derivados que possam potencializar a ação desses compostos. Chalconas com anéis heterocíclicos, por exemplo, foram identificadas como potenciais agentes contra diversos tipos de câncer (MARTINEZ-CIFUENTES et al., 2015; SHARMA; KUMAR; KUMAR, 2013), assim como as bis-chalconas simétricas se mostraram eficientes em impedir o efluxo de drogas pela proteína transportadora ABCG2 que é um dos maiores obstáculos para o tratamento de câncer com quimioterapia (WINTER et al., 2014).

O aumento da resistência aos antimicrobianos constitui um problema de saúde global que emergiu desde o início da era dos antibióticos. Um patógeno pode ser naturalmente resistente ou ele pode adquirir essa resistência a uma droga que anteriormente era sensível, um processo que facilmente ocorre nos hospitais e que os tornam terreno fértil para floras cada vez mais resistentes (MAYERS et al., 2017). Os mecanismos de efluxos de múltiplas drogas tais como NorA e MepA, já identificadas em cepas de *S. aureus* (COSTA S. S. et al., 2013), se mostram como um obstáculo à saúde pública na medida em que cada vez mais alguns organismos se tornam resistentes aos tratamentos convencionais e promovem infecções bacterianas preocupantes (REZENDE-JÚNIOR et al., 2020). Embora várias classes de compostos, incluindo as chalconas, já tenham sido identificadas com sendo adjuvantes na ação inibidora de bombas de efluxo, a química das chalconas ainda parece ser uma das áreas mais

importantes para gerar novas oportunidades na concepção e descoberta de novos compostos bioativos (RANI et al., 2019).

Outra preocupação que emerge atualmente, refere-se aos transtornos de ansiedade que afetam grupos de diversas idades ao redor do mundo. Os benzodiazepínicos (BZDs) compreendem a classe de medicamentos mais comum no tratamento dos transtornos de ansiedade, porém causam efeitos adversos tais como sedação, relaxamento muscular, amnésia e potencial de dependência. Assim, os cientistas buscam há anos por agentes efetivos no combate a ansiedade que não causem afeitos colaterais (LIU et al., 2015). Já se sabe, por exemplo, que algumas chalconas tais como a isoliquiritigenina e a buteína, possuem ação ansiolítica muito similar ao Diazepam em modelos animais com alta afinidade no sítio dos BZDs em receptores GABA_A (JAMAL; ANSARI; RIZVI, 2008; SALEHI et al., 2021). Portanto, as chalconas e seus derivados compõem uma classe de substâncias bastante promissoras no combate aos distúrbios do sistema nervoso central, em especial, aqueles relacionados à ansiedade (MATHEW et al., 2019).

• OBJETIVOS E QUESTIONAMENTOS

Tendo em vista a vasta literatura científica contemplando as potencialidades das chalconas na química medicinal, percebe-se que mesmo com o aumento recente na síntese de vários derivados, ainda é uníssono entre os especialistas que é possível o desenvolvimento de estruturas moleculares análogas às chalconas ainda mais eficazes, e com o adicional de serem de baixo custo, então, é possível atuar no desenvolvimento de derivados da dibenzalacetona sintéticos com esse propósito. Um questionamento que emerge logo na sequência é: Quais atividades biológicas seriam relevantes no contexto da identificação de chalconas bioativas? Essa resposta veio em função da vontade de contribuir na descoberta de algum composto para o enfrentamento de alguns tipos de câncer, que é uma doença grave e que acomete milhares de pessoas todos os anos, do aproveitamento da vasta expertise do departamento no estudo de infecções com bactérias resistentes à múltiplas drogas, bem como, eventualmente, da disponibilidade para realização de outras atividades biológicas de interesse. Portanto, foi realizado o estudo da atividade antimicrobiana dos derivados da dibenzalacetona sintéticos e sua ação moduladora com antibióticos convencionais em cepas multirresistentes pelo mecanismo de bomba de efluxo. Em seguida, conduziu-se a investigação tanto da atividade citotóxica frente às células tumorais de cólon, próstata e glioblastoma, quanto em relação à atividade locomotora e ansiolítica em modelos de zebrafish (Danio rerio).

Em paralelo às investigações das atividades biológicas, desvendou-se toda a estrutura dos compostos obtidos, bem como fez-se uma completa varredura nas suas características espectroscópicas vibracionais. Essa investigação é importante na elucidação dos modos vibracionais das moléculas contribuindo para a literatura científica especializada e no entendimento de algumas de suas características. Para isso recorreu-se às técnicas de modelagem molecular necessárias na obtenção da geometria otimizada para posterior cálculo dos modos normais de vibração. Já para provar a pureza dos compostos sintetizados recorreu-se a convergência entre suas características estruturais com eventuais atividades biológicas, de forma a tentar propor algum mecanismo de ação. Para isso utilizou-se técnicas de quimioinformática, que é uma área que combina campos científicos da química, ciências da computação e ciências da informação para transformar dados químicos e biológicos em conhecimento que apoia a tomada de decisão.

Portanto este trabalho teve como objetivos sintetizar três derivados da dibenzalacetona e investigar suas atividades: Citotóxica frente às cepas HCT-116 (carcinoma do cólon), SNB (glioblastoma) e PC3 (próstata); antimicrobiana e moduladora da ação de antibióticos convencionais em cepas multirresistentes de *S. aureus*; locomotora e ansiolítica em modelos de *zebrafish* (*Danio rerio*). Também se propôs a apresentar o *design* e a elucidação estrutural dessas moléculas bem como uma completa caracterização espectroscópica vibracional com modelos *in silico* feitos a partir de estudos de mecânica molecular e química quântica, realizando uma comparação com as medidas experimentais de espectroscopia de infravermelho e Raman. Além disso, realizar simulações de docagem molecular dos compostos em modelos biológicos representando as proteínas transportadoras das bombas de efluxo NorA e MepA, e o receptor GABA_A, para um melhor entendimento dos mecanismos presentes nessas interações.

Os compostos objetos desse estudo são: (1E,4E)-1,5-di(tiofen-2-il)penta-1,4-dien-3ona, (1E,4E)-1,5-bis(4-etoxifenil)penta-1,4-dien-3-ona e (1E,4E)-1,5-bis(4-clorofenil)penta-1,4-dien-3-ona, que foram chamados de DB tiofeno, DB etoxi e DB cloro, respectivamente.

ESTRATÉGIAS DE PESQUISA

Este trabalho é de natureza aplicada, com uma abordagem quantitativa e é classificado quanto aos seus objetivos como uma pesquisa explicativa. Esse tipo de pesquisa ocupa-se de encontrar as explicações para a ocorrência de determinados fatos ou fenômenos. As ciências da natureza utilizam com muita frequência esse tipo de pesquisa que envolve o pesquisador num nível elevado de responsabilidade para com os resultados obtidos (SANTOS, 2007). Quanto aos procedimentos utilizados nesse trabalho destacam-se: a pesquisa bibliográfica – que é o domínio do estado da arte sobre determinado assunto, e a pesquisa experimental – que se caracteriza pela manipulação direta das variáveis que influenciam o objeto de estudo. A manipulação dessas variáveis permite relacionar as causas e os efeitos de determinado fenômeno (CERVO; BERVIAN; SILVA, 2007).

Existem diversas estratégias, catalisadores e condições para a síntese de chalconas (ZHUANG et al., 2017), uma das mais utilizadas é a reação de condensação via catálise ácida ou básica. Devido à baixa complexidade e custo, os derivados da dibenzalacetona desse estudo foram sintetizados pela condensação de Claisen–Schmidt (CLAISEN; CLAPARÈDE, 1881; SCHMIDT, 1881) com catalisador básica, utilizando dois equivalentes do aldeído apropriado em relação a propan-2-ona de forma que houvesse uma dupla condensação e a formação de uma porção dienona. A estratégia empregada na confirmação da estrutura química dos compostos obtidos se deu através da espectroscopia de ressonância magnética nuclear (¹H e ¹³C RMN) bem como da espectroscopia de massa (EM). Ambas são técnicas consagradas da análise instrumental e bastante utilizadas na caracterização de compostos orgânicos.

O estudo da espectroscopia vibracional ocorre numa faixa bem larga do espectro das radiações eletromagnéticas, nessa faixa se dão as transições de níveis de energia vibracional e rotacional que fornecem várias informações estruturais das moléculas tais como ângulos e comprimentos de ligação. Para o estudo com esse tipo de transição energética, foram empregadas nesse trabalho, as técnicas de espectroscopia de Infravermelho (IV) e espectroscopia Raman, ambas com transformada de Fourier. Essas duas técnicas estão intimamente relacionadas pois se originam no mesmo nível de transição vibracional das moléculas, porém devido à forma como ocorrem as excitações energéticas em cada uma, elas devem ser utilizadas de forma complementar. Em outras palavras, uma ligação apolar pode ser Raman ativa, mas IV inativa. No entanto, uma ligação polar pode ser IV ativa e Raman inativa ou ambas ativas (YADAV, 2013).

Investigações estruturais mais aprofundadas requerem, além de dados experimentais de IV e Raman, cálculos teóricos de modelagem molecular e química quântica *in silico*. Para realização dos cálculos teóricos, recorreu-se à Teoria do Funcional da Densidade (*Density Functional Theory* – DFT) por apresentar ganhos na velocidade computacional e no espaço de memória em relação aos métodos tradicionais *ab initio* e aos métodos semi-empíricos (HINCHLIFFE, 2008). Nos cálculos de DFT empregou-se o funcional híbrido de correlação

Lee-Yang-Parr B3LYP (BECKE, 1993; LEE; YANG; PARR, 1988) combinado com o conjunto base 6-31G* (JOHNSON III; RUSSELL, 2020). Essa escolha deu-se porque o campo de força do B3LYP produz espectros com excelente concordância com os dados experimentais (STEPHENS et al., 1994).

Para determinação da atividade antimicrobiana e moduladora da ação de antibióticos empregou-se o método da microdiluição seriada em caldo de crescimento. Esse método foi escolhido por ser bastante utilizado para a avaliação quantitativa *in vitro* da atividade antimicrobiana pela mensuração da concentração inibitória mínima – CIM (BALOUIRI; SADIKI; IBNSOUDA, 2016). Seguiu-se os padrões aprovados pelo Instituto de Padrões Clínicos e Laboratoriais (*Clinical and Laboratory Standards Institute* – CLSI) (WIKLER, 2006) que garantem que o ensaio seja feito de forma padronizada afim de avaliar a relevância clínica dos resultados. Na avaliação da citotoxicidade dos compostos foi empregado o ensaio colorimétrico rápido com Brometo de 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazólio (MTT) para crescimento e sobrevivência celular (MOSMANN, 1983). Nos ensaios de atividade locomotora foi utilizado o teste de campo aberto e para atividade ansiolítica o teste claro/escuro, ambas em modelo de *zebrafish* (*Danio rerio*) (BENNEH et al., 2017; MAGALHÃES et al., 2017).

Para o estudo de docagem molecular foi necessário inicialmente construir modelos de homologia das proteínas transmembranares NorA e MepA pois suas estruturas cristalizadas ainda não estavam disponíveis nos bancos de dados. No caso da estrutura proteica do receptor GABAA, uma vez que este já existia na literatura na forma cristalizada, foi preciso apenas prepará-la para a docagem. Empregou-se tanto *AutoDock4* (MORRIS et al., 2010) quanto o *AutoDock Vina* (TROTT; OLSON, 2010) nos cálculos de docagem molecular. Para a avaliação do potencial dos compostos em se tornar um medicamento, conduziu-se uma análise *in silico* das propriedades físico-químicas, testes de farmacocinética, semelhança com drogas e compatibilidade com química medicinal no *SwissADME* (DAINA; MICHIELIN; ZOETE, 2017), uma plataforma que fornece modelos de previsão on-line de forma livre.

• ESTRUTURA DA TESE

A presente tese foi dividida em cinco capítulos, no primeiro consta a fundamentação teórica dos conceitos importantes para o trabalho, nele buscou-se criar condições para que o leitor possa situar-se quanto ao estado da arte relativo ao tema. Inicia-se com a caracterização da classe de compostos denominada de chalconas e suas formas de obtenção, em seguida é

apresentada uma classe análoga das chalconas denominada de derivados da dibenzalacetona ressaltando suas principais atividades biológicas encontradas da literatura. Procurou-se enfatizar as atividades citotóxica/anticâncer, antibacteriana/moduladora da ação dos antibióticos e ansiolítica pois eram essas que integravam os objetivos da tese. Nesse capítulo também constam conceitos de espectroscopia vibracional (Infravermelho e Raman), espectroscopia de massa, de ressonância magnética nuclear, cálculos computacionais relativos à Teoria do Funcional da Densidade e de docagem molecular. O segundo capítulo é composto pelo artigo já publicado na revista Journal of Molecular Structure número 1215 no ano de 2020, intitulado "Spectroscopic characterization and efflux pump modulation of a thiophene curcumin derivative". Nele relata-se a obtenção do DB tiofeno, sua completa caracterização espectroscópica, avaliação do seu desempenho como inibidor das bombas de efluxo NorA e MepA, e estudos de docagem molecular do composto em um modelo de homologia da proteína transportadora da bomba de efluxo NorA. No terceiro capítulo acrescentou-se um artigo também já publicado no ano de 2021 na revista Journal of Molecular Structure número 1231, cujo título é "Full Spectroscopic Characterization and Cytotoxicity Activity of Synthetic Dibenzalacetone Derivatives". Nessa publicação constam as sínteses dos compostos DB etoxi e DB cloro, toda caracterização espectroscópica, a avaliação das suas atividades citotóxicas bem como um estudo in silico de semelhança com drogas para denotar seu potencial de se tornarem fármacos. O quarto capítulo é composto por um terceiro artigo cujo título é "Cytotoxicity Activity, Efflux Pump Inhibition, Anxiolytic-Like Effect and Molecular Docking Studies of Synthetic Bis-chalcones". Nesse artigo os três derivados da dibenzalacetona (DB tiofeno, DB etoxi e DB cloro) tiveram suas atividades citotóxica, ansiolítica e moduladora de bomba de efluxo (NorA e MepA) compiladas e avaliadas, tal como seus mecanismos de interação, tanto em modelos de homologia das proteínas NorA e MepA quanto na proteína do receptor GABA_A, examinados por estudos de docagem molecular. Por fim, no capítulo cinco, são expostas as considerações finais evidenciando os principais achados e conclusões dessa tese. Outrossim, são sugeridos nessa parte alguns caminhos para investigações futuras bem como outros trabalhos que podem ser motivados por essa tese.

1. FUNDAMENTAÇÃO TEÓRICA

1.1. CHALCONAS

As chalconas constituem um grupo de compostos com esqueleto estrutural comum formado por 1,3-difenil-2-propen-1-ona, uma fenilestiril cetona que existe como isômeros *cis* e *trans*, sendo o isômero *trans* termodinamicamente mais estável (Figura 1). A palavra "chalcona" deriva do Grego "*chalcos*" que significa bronze, por causa da cor da maioria das chalconas naturais que são amarelas, laranjas ou marrons. Seu formato geral contém dois anéis aromáticos que estão ligados por meio de uma carbonila e outros dois átomos de carbono α , β insaturados, formando uma porção enona. O anel aromático ligado diretamente à carbonila é chamado de A e o outro é chamado de B (GOMES et al., 2017; RANI et al., 2019; SINGH et al., 2020; ZHUANG et al., 2017).

Figura 1. Esqueleto estrutural comum das chalconas cis e trans com numeração dos carbonos.

A síntese de chalconas em laboratório remonta ao século XIX e o isolamento da primeira chalcona natural só ocorrera após o ano de 1910. As chalconas naturais são encontradas numa ampla variedade de árvores e plantas, principalmente como pigmentos das pétalas, mas também nas cascas, folhas, frutos e raízes (NI; MENG; SIKORSKI, 2004). Normalmente as chalconas naturais são sólidos cristalinos e possuem substituintes nos anéis tais como hidroxilas, metilas e prenilas, mas também existem na forma de dihidrochalconas, dímeros (bichalconas) e glicosídeos (RAMMOHAN et al., 2020).

1.1.1. Síntese química das chalconas

As chalconas são normalmente preparadas através de reações de condensação catalisada por ácidos ou bases. Apesar da simplicidade na obtenção da estrutura básica, diversas técnicas e procedimentos vem sendo desenvolvidos ao longo dos anos. Além disso, sua estrutura privilegiada permite uma variedade de substituições o que possibilita a produção de diferentes compostos. Aqui serão retratadas apenas as principais estratégias na síntese do esqueleto básico.

1.1.1.1. Condensação de Claisen–Schmidt

Este tipo de reação recebe o nome dos dois cientistas que primeiro demostraram a condensação da acetona com o benzaldeído (Figura 2), e da acetona com o aldeído furfural, na presença de um catalizador (CLAISEN; CLAPARÈDE, 1881; SCHMIDT, 1881). Esse catalisador tanto pode ser uma base forte, quando a chalcona é gerada via desidratação aldólica envolvendo um enolato sobre uma carbonila, quanto um ácido forte, quando a chalcona é gerada via mecanismo enol. O rendimento desse tipo de reação depende dos reagentes e do catalisador, podendo variar de 10% até quase 100%. As bases normalmente utilizadas são terc-butóxido de potássio, hidróxido de potássio e hidróxido de sódio dissolvidos em metanol ou etanol em temperatura ambiente. Em algumas situações pode ser necessário o aumento da temperatura para melhorar o rendimento da reação (ZHUANG et al., 2017).

A forma mais comum de realizar essa reação é em fase líquida utilizando solventes polares, porém, a condensação em fase sólida também pode ser realizada em alguns casos. Nessa situação a cetona liga-se à uma resina, e então é tratada com o benzaldeído. Finalmente as chalconas são liberadas da resina por tratamento com ácido trifluoroacético (RAMMOHAN et al., 2020). Existem formas alternativas de obtenção de chalconas por condensação de Claisen–Schmidt. Algumas em condições de ausência de solvente tais como o método da moagem (RATEB; ZOHDI, 2009), método da irradiação por micro-ondas (KAKATI; SARMA, 2011) e o método da irradiação com ultrassom (CHTOUROU et al., 2010). Essas técnicas possuem uma abordagem sustentável por não utilizarem solvente e por apresentarem bons rendimentos a temperatura ambiente.

Figura 2. Condensação de Claisen-Schmidt de chalconas.

1.1.1.2. Reações de acoplamento cruzado

Muitas vezes a condensação de Claisen–Schmidt resulta numa mistura complexa de subprodutos que tornam custoso a purificação das chalconas. Nesses casos existem alternativas já conhecidas para a síntese das chalconas como as reações de acoplamento cruzado.

1.1.1.2.1. Acoplamento de Suzuki

Essa reação foi descrita pela primeira vez em 1979 por Akira Suzuki. Trata de um tipo de acoplamento cruzado utilizando catalizadores de paládio que produz a formação de ligações carbono-carbono bastante poderosas. Eddarir e colaboradores foram os primeiros a utilizar esse tipo de reação para obtenção de chalconas. Nesse trabalho são relatadas duas rotas para obtenção das chalconas (Figura 3), uma envolvendo o acoplamento entre ácidos cinâmicos ativados e ácidos fenilborônicos, e outra compreendendo o acoplamento entre ácidos benzóicos ativados e ácidos fenilvinilborônicos (EDDARIR et al., 2003).

R¹ = H, OMe; R² = H, NO₂, OMe; R₁ = H, OMe; R₂ = H, NO₂, OMe, CF₃; R₃ = H, CF₃; R₄ = OMe; X = CI

Figura 3. Esquemas para obtenção de chalconas através do acoplamento de Suzuki sob diferentes condições e diversos catalizadores de paládio relatadas por Eddarir et al. (2003).

1.1.1.2.2. Acoplamento de Heck

O acoplamento de Heck consiste na reação entre halogenetos de arila, benzila e estirila com compostos olefínicos na presença de uma amina impedida² e uma certa quantidade de catalizador de paládio para formar derivados vinílicos nos quais o grupo aril, benzil ou estiril substitui um hidrogênio vinílico da olefina original. A temperatura de reação gira em torno de 100 °C e os rendimentos são geralmente bons (HECK; NOLLEY, 1972). Estruturalmente as chalconas são estilbenos³, e podem também ser obtidas de forma eficiente pela reação clássica de Heck. Como mostrado na Figura 4, um ácido arilborônico ou um iodeto de arila pode reagir com uma cetona insaturada na presença de uma base e um catalisador de paládio obtendo o esqueleto básico das chalconas (RAMMOHAN et al., 2020).

²Aminas terceárias que possuem o par de elétrons não compartilhado do átomo de nitrogênio impedido estericamente.

³ Hidrocarboneto consistindo de uma ligação dupla trans eteno substituída com um grupo fenila em ambos os átomos de carbono da ligação dupla.

Figura 4. Síntese de chalconas através do acoplamento de Heck.

1.1.1.2.3. Reação de Wittig

Ramirez e Dershowitz obtiveram pela primeira vez a benzalacetofenona (1,3-difenil-2propen-1-ona) a partir de trifenilbenzoilmetileno fosforano e benzaldeído (Figura 5) dissolvidos em tetrahidrofurano ao longo de 30 h sob refluxo, como também ao longo de 3 dias em benzeno sob refluxo, obtendo rendimentos moderados em ambas. Essas reações foram interpretadas como sendo análogas à olefinação de Wittig (RAMIREZ; DERSHOWITZ, 1957). Mais tarde a cinética da reação bem como seu rendimento foram bastante melhorados utilizando irradiação de micro-ondas (XU; CHEN; HUANG, 1995).

Figura 5. Reação de Wittig para síntese de chalcona.

1.1.1.2.4. Olefinação de Julia–Kocienski

Apesar de haver certa imprevisibilidade no resultado estereoquímico das transformações, a reação de Julia-Kocienski tornou-se indispensável como alternativa para olefinação de compostos orgânicos (AÏSSA, 2009). A reação original publicada por Marc Julia em 1973 é baseado num processo de eliminação redutiva em duas etapas de β -aciloxi-aril sulfonas (JULIA; PARIS, 1973). Já a reação de Julia modificada, conhecida como Julia–Kocienski, envolve o acoplamento direto de heteroarilsulfonas com compostos de carbonila em etapa única (BAUDIN et al., 1991). Então esse tipo de reação se tornou bastante versátil e foi sendo utilizada para a síntese de diversos compostos biologicamente ativos, até que Kumar e

colaboradores foram os pioneiros na produção de diversas chalconas e flavonoides através da olefinação de Julia-Kocienski com excelentes rendimentos. Eles desenvolveram um novo reagente (2- (Benzo[d]tiazol-2-il-sulfonil)-1-feniletanonas) capaz de reagir com aldeídos na presença de uma base para formar chalconas (Figura 6) (KUMAR et al., 2010).

Figura 6. Olefinação Julia-Kocienski para síntese de chalconas.

1.1.1.3. Outras estratégias para síntese de chalconas

Existem outras estratégias para a síntese de chalconas. Dentre elas destacam-se: a acilação de Friedel-Crafts, onde ocorre a acilação de um éter aromático com cloreto de cinamoil na presença de um ácido de Lewis forte (*e.g.* cloreto de alumínio); e o rearranjo do fenilcinamato de Photo-Fries, que é a fotossíntese de chalconas onde acontece o rearranjo de um fenilcinamato para uma hidroxi-aril cetona na presença de ácidos de Lewis (Figura 7) (ZHUANG et al., 2017).

Figura 7. Síntese de chalconas pelas reações Friedel-Crafts e Photo-Fries.

1.2. DERIVADOS DA DIBENZALACETONA

Os estudos com chalconas evoluíram e as modificações estruturais foram acontecendo com o objetivo de potencializar eventuais propriedades. Dentre as principais modificações observadas destaca-se o aumento do sistema conjugado de duplas ligações das chalconas resultando em derivados que, como já relatado na introdução deste trabalho, podem ser denominados como derivados da dibenzalacetona, bis-chalconas ou simplesmente derivados das chalconas. Outra modificação que merece ser ressaltada é a adição de anéis heterocíclicos na estrutura. Esses compostos podem ter uma estrutura análoga à curcumina, portanto, não raro, encontra-se também a denominação de curcuminóide em alguns trabalhos.

As chalconas e seus derivados apresentam uma extensa deslocalização de elétrons devido a presença de grupos doadores de elétrons fortes (D) e aceitadores de elétrons fortes (A) ligados por pontes de elétrons π . As chalconas simples, com apenas uma porção enona, geralmente apresentam configuração assimétrica do tipo D- π -A, já os derivados da dibenzalacetona, devido sua porção dienona, possuem uma deslocalização eletrônica ainda maior com configuração típica D- π -A- π -D. Além da presença de grupos A e D, a planaridade desse tipo de molécula também ajuda na deslocalização eletrônica favorecendo ainda mais na polarizabilidade e influenciando fortemente algumas propriedades desses compostos (REDDY et al., 2014).

Os derivados da dibenzalacetona são cromóforos que podem ser obtidas por uma dupla reação de condensação contendo uma cetona com duas regiões reativas $\alpha \in \alpha'$ com dois equivalentes de um aldeído (NOHUT MAŞLAKCI et al., 2018).

A Figura 8 mostra o mecanismo de reação de dupla condensação de Claisen–Schmidt com catalisador básico via desidratação aldólica, em que a acetona (propanona) reage com dois equivalentes de um aldeído aromático para produzir os derivados da dibenzalacetona.

Figura 8. Mecanismo de reação para síntese dos derivados da dibenzalacetona utilizando catalisador básico. (D) normalmente é um anel aromático substituído ou não, ou um anel heterocíclico.

1.3. ALGUMAS PROPRIEDADES DAS CHALCONAS E DERIVADOS

Em geral as chalconas são mais estáveis quimicamente que os flavonóides e isoflavonóides. São solúveis em álcoois, soluções aquosas ácidas e básicas bem como solventes orgânicos tais como acetona, clorofórmio e diclorometano. Em soluções alcalinas elas apresentam uma coloração vermelha ou laranja. Chalconas são convertidas em flavonóis pela sua oxidação utilizando peróxido de hidrogênio em solução metanólica de hidróxido de sódio. As flavononas podem ser facilmente obtidas através da ciclização de chalconas tratadas com

ácido bromídrico em ácido acético glacial. Nesta isomerização pode ocorrer desmetilação parcial e desbenzilação. As chalconas quando aquecidas com traços de iodo em dimetilsulfóxido produzem as flavonas correspondentes (RAMMOHAN et al., 2020).

Devido ao seu sistema de duplas ligações conjugadas, e dependendo dos substituintes nos anéis benzeno, as chalconas podem apresentar propriedades fluorescentes. Compostos com propriedades fluorescentes despertam bastante interesse em função das diversas aplicações que eles podem ter (*e.g.* sondas químicas, materiais eletrocrômicos, corantes fluorescentes, aditivos para células solares, marcadores no diagnóstico e na ação de fármacos). Os principais parâmetros envolvidos no estudo da fluorescência e que estão relacionados com a densidade eletrônica ao redor da molécula são: Os comprimentos de onda de absorção (*Abs* λ_{nm}) e emissão (*Emi* λ_{nm}), o coeficiente de extinção (ε) e o rendimento quântico (ϕ) (RAMMOHAN et al., 2020; ZHUANG et al., 2017).

1.4. ATIVIDADES BIOLÓGICAS DAS CHALCONAS E DERIVADOS

Como já mencionado, as chalconas e seus derivados são uma classe de compostos que possuem amplo espectro de atividades biológicas com reconhecido potencial farmacológico. A Figura 9 mostra algumas das atividades biológicas das chalconas e seus derivados. Os prováveis fatores que tornam esses compostos tão versáteis biologicamente já foram mencionados na parte introdutória desse trabalho. A seguir discorreremos sobre três das principais atividades biológicas das chalconas e derivados: Atividade anticâncer, atividade antibacteriana e atividade ansiolítica.

1.4.1. Atividade anticâncer

Câncer é uma doença com elevado risco de morte caracterizada pela multiplicação não controlada de células. Atualmente o câncer é considerado um dos principais problemas de saúde pública no mundo, aparecendo como a quarta principal causa de morte antes dos 70 anos de idade (BRAY et al., 2018). No Brasil, estima-se que a incidência de câncer no triênio 2020 – 2022 deva chegar a 625 mil novos casos por ano. O câncer de pele não melanoma será o mais incidente, seguido de mama, próstata, cólon, reto, pulmão e estômago (MINISTÉRIO DA SAÚDE - INSTITUTO NACIONAL DE CÂNCER JOSÉ ALENCAR GOMES DA SILVA, 2019). Embora os tratamentos químicos para diversos tipos de câncer tenham evoluído muito, suas limitações e efeitos colaterais ainda motivam muitas pesquisas na busca de novos agentes anticâncer que sejam mais seguros e sobretudo mais seletivos (SINGH; ANAND; KUMAR, 2014).

Figura 9. Principais atividades biológicas identificadas em chalconas e seus derivados.

Muitas chalconas, tanto de origem natural quanto sintética, bem como seus derivados, são frequentemente identificados com efeito anticâncer em diversas linhagens de células. A manipulação dos seus anéis aromáticos, por exemplo, a substituição destes por anéis heterocíclicos ou por derivados do ferroceno, bem como a conjugação com outras estruturas farmacologicamente ativas têm sido reportadas como estratégias que aumentam as propriedades anticâncer das chalconas (RANI et al., 2019).

Os primeiros relatos de atividade anticâncer das chalconas apareceram na década de 70, onde uma série de chalconas cloro/nitro substituídas apresentaram atividade citotóxica em várias células tumorais (DORE; VIEL, 1974). Contudo essa classe de compostos só ganhou notoriedade cerca de 20 anos depois, e desde então, só cresce o interesse científico nas chalconas como inibidoras do crescimento de células tumorais (DUCKI, 2007).

Diversas chalconas possuem efeito citotóxico contra diferentes linhagens de células tumorais, porém a forma como as células tumorais são combatidas é bastante variado. As chalconas podem atuar impedindo a proliferação celular inibindo a catepsina K, uma enzima da classe das proteases de cisteína lisossomal que se expressa significativamente no câncer de mama humano e quando suprimida ocasiona a redução da propagação do tumor; inibindo a tubulina, proteína globular responsável pela mitose, motilidade, arquitetura do citoesqueleto,

transporte intracelular e secreção; inibindo a fosfatase CDC25B que desempenha papel importante na progressão do ciclo celular; inibindo a expressão da topoisomerase que ocasiona a parada do ciclo celular; inibindo glicoproteínas autócrinas e parácrinas (Wnt) que são importante no desenvolvimento do tecido mamário e na carcinogênese; e inibindo o receptor de tirosina quinases ErbB que desempenham um papel importante na fisiologia normal das células como também no câncer. Além disso as chalconas podem atuar como inibidores do meio hormonal, inibindo as 5α-redutases, a translocação do receptor andrógeno e a síntese dos hormônios sexuais, todos esses relacionados ao câncer de próstata; como inibidores da desacetilação proteica e inibidores da degradação da proteína p53, também chamada de supressora tumoral p53, que é uma proteína que regula o ciclo celular e atua como supressor de tumor, prevenindo o câncer. A p53 tem um papel importante na atividade anticâncer e medeia o reparo do DNA, apoptose, inibição da angiogênese, estabilidade genômica e ativação gênica. A proteína p53 é degradado por vários compostos, tais como o MDM2 e o Sirtuin-1. Por fim, também existem chalconas que atuam na inibição da via de sinalização JAK/STAT bem como na inibição da angiogênese, que é o processo de vascularização dos tumores (MAHAPATRA; BHARTI; ASATI, 2015).

Quando não atuam diretamente na redução do crescimento das células malignas, as chalconas também podem agir como moduladoras do efeito de outras drogas. As células humanas naturalmente possuem mecanismos de exportação para uma grande variedade de substratos, incluindo produtos metabólicos, drogas, toxinas, lipídios endógenos, peptídeos, nucleotídeos, esteróis etc. Sendo assim, as células tumorais podem adquirir resistência aos quimioterápicos através do efluxo dessas drogas diminuindo assim sua eficácia sobre o tumor. Para que ocorra esse processo são necessárias proteínas transmembranares que expulsam os fármacos através da membrana celular. Dentre os principais tipos de mecanismos de efluxo encontra-se a família transportadores de cassetes de ligação de ATP (ABC). Nessa família são conhecidas até agora três tipos de proteínas de efluxo que parecem ser responsáveis pela resistência a múltiplas drogas em células humanas: a glicoproteína-p (ABCB1, MDR1), as proteínas de resistência do câncer de mama (BCRP, ABCG2, MXR, ABCP) e a proteína 1 associada à resistência a múltiplas drogas (MRP1, ABCC1). Nesse caso, as chalconas não atuam diretamente na diminuição do câncer, elas atuam de forma a impedir que as células malignas sejam resistentes à quimioterapia. Já foram identificadas diversas chalconas eficazes na inibição da ABCG2 humana, na BCRP e nas glicoproteínas-p ABCB1 e MDR1 (MAHAPATRA; BHARTI; ASATI, 2015).

Recentemente, uma série de chalconas foi sintetizada e testada in vitro contra uma linhagem de câncer de fígado (HepG2), todas demostraram significativa atividade citotóxica, no entanto aquelas com anéis substituídos por cloro ou hidroxila na posição para detiveram um maior potencial (PATIL; KHAN; ZANGADE, 2020). Já as bis-chalconas 2,6-di(4fluorobenzilideno) ciclohexanona e (2E,6E)-2,6-bis(4trifluorometilfenilmetilideno)ciclohexanona obtiveram resultados satisfatórios contra as linhagens PC3 (câncer de próstata), HeLa (câncer cervical), MCF-7 (câncer de mama) e 3T3 (fibroblasto normal), entretanto nenhuma delas obteve IC₅₀ menor que as drogas padrão doxorrubicina e cicloheximida (LOTFY et al., 2017). Em outro trabalho, cinco compostos também derivadas da benzilidina ciclohexanona, com estrutura análoga à cúrcuma, inibiram o crescimento de células cancerosas de adenocarcinoma gástrico (AGS) e carcinoma de células escamosas do esôfago (KYSE30) através da indução de apoptose e parada do ciclo celular na fase G1. Todos os compostos obtiveram resultados melhores que a cúrcuma sugerindo que os curcuminóides menos polares possuem uma maior citotoxicidade in vitro (ALIBEIKI et al., 2017).

Bis-chalconas contento uma porção terpenóide também se mostraram ativas na antiproliferação das linhagens SF-295 (sistema nervoso central), HCT-116 (câncer de cólon) e OVCAR-8 (câncer de mama). Esse estudo revelou que os melhores resultados foram obtidos contra a células HCT-116 e que a substituição de um grupo nitro em qualquer posição do anel benzeno foi decisivo no aumento da atividade citotóxica, enquanto que o tipo de ciclohexeno, encontrado na porção terpeno, não afeta significativamente essa atividade (LIMA et al., 2019). Outro composto desse tipo, com um cloro na posição *para* do anel aromático, foi capaz de inibir o crescimento do sarcoma S-180 pela ação antiangiogênica e anti-inflamatória (LEMES et al., 2018). Derivados de chalconas também já foram identificados como sendo inibidores específicos das proteínas transportadoras ABCG2 e ABCB1 superexpressadas em algumas linhagens de câncer resistentes a múltiplas drogas (CAI et al., 2020).

1.4.2. Atividade antibacteriana

Embora o advento dos antibióticos tenha proporcionado uma revolução no século XX, quase todos os grupos importantes de antibióticos vêm perdendo eficácia por causa do aumento da resistência microbiana. O uso desenfreado, o mau uso e o abuso dessas drogas vêm acelerando a evolução desses organismos, resultando numa maior ocorrência de complicações em infecções que outrora seriam facilmente tratadas. Muitos organismos responsáveis por infecções comuns (*e.g.* infecções do trato urinário, pneumonia e infecções da corrente
sanguínea) estão cada vez mais resistindo às terapias com antibióticos convencionais. Daí essa situação apresenta-se com um gravíssimo problema de saúde pública em todo o mundo. Desde então, o desenvolvimento de novos antibióticos tem se configurado como uma das formas de enfrentar tal situação. Porém, ele também tem sido acompanhado pelo aumento constante de cepas bacterianas resistentes a antibióticos e pela diversidade de mecanismos usados pelas bactérias para superar o efeito letal desses compostos (BALOUIRI; SADIKI; IBNSOUDA, 2016; COSTA S. S. et al., 2013; ZHANG et al., 2018).

Nesse contexto as chalconas e seus derivados têm atraído muito interesse como agentes antibacterianos, que se reflete na vasta literatura científica produzida nas últimas décadas, porém os mecanismos de ação ainda não estão completamente compreendidos. Os principais mecanismos de ação das chalconas como antibacterianos já reportados na literatura são pela inibição da via biossintética de ácidos graxos tipo II (FASII), pela interferência na replicação do DNA bacteriano, pela inibição da proteína FtsZ, pela inibição dos fatores de virulência ou pela inibição das proteínas tirosina fosfatases. Além disto, as chalconas podem potencializar a ação de antibióticos pela inibição de mecanismos de resistência, tais como as bombas de efluxo (DAN; DAI, 2020).

1.4.2.1. Inibição da via biossintética de ácidos graxos tipo II (FASII)

Os ácidos graxos são estruturas simples que desempenham um papel fundamental nas células. Eles são o principal constituinte da membrana celular bem como intermediário no metabolismo bacteriano. O sistema FASII existente nas bactérias usa uma série de proteínas monofuncionais que são codificadas por genes discretos para catalisar cada etapa da via biossintética. Esse sistema é capaz de produzir diversos produtos para o metabolismo celular tais como ácidos graxos insaturados, ácidos graxos de cadeia *iso* e *anteiso* ramificada e ácidos graxos hidroxilados. Ácidos micólicos, produzidos pela FASII, são longos ácidos graxos que desempenham uma função essencial na arquitetura e permeabilidade da parede celular de micobactérias. Portanto o sistema FASII tem sido amplamente explorado como alvo para a ação antibacteriana (WANG; MA, 2013).

Em estudo recente, três derivados de chalconas tiveram excelentes resultados na ação contra uma cepa de *M. tuberculosis* (H₃₇Rv) com modo de ligação semelhantes aos inibidores FASII. Nesse mesmo estudo, ficou demonstrado também que esses compostos não foram tóxicos aos megacariócitos humanos nem às células B murinas (RAMESH et al., 2020). Antes disso, em 2012, uma série de chalconas e derivados mostraram inibição da FASII em

micobactérias variando de moderada a boa, tendo como melhor resultado uma inibição do crescimento microbiano de 88% em uma concentração da chalcona de 100 μ M (ANAND et al., 2012).

1.4.2.2. Inibição da replicação do DNA bacteriano

A enzima DNA girase é uma topoisomerase do tipo II presente em células procarióticas que desempenham papel essencial na replicação do DNA. Como a DNA girase bacteriana está ausente em humanos, ela é um alvo atraente para a ação antibacteriana. As fluoroquinolonas são uma classe de antibióticos de muito sucesso com esse tipo de ação (DAN; DAI, 2020).

Em 2014, três chalconas à base de quinolonas se mostraram significativamente ativas (IC₅₀ \leq 0,125 mg/mL) na ação antibacteriana em cepas de *S. aureus*. Nesse estudo ficou demonstrado que duas dessas três chalconas inibiram fortemente a DNA girase da *S. aureus*, o que sugere ter sido esse o mecanismo de ação desses compostos (ABDULLAH et al., 2014).

1.4.2.3. Inibição da proteína FtsZ

O processo de divisão celular é sem dúvida vital à sobrevivência e crescimento de organismos procarióticos. Em bactérias e archaea esse processo geralmente ocorre por meio de um mecanismo denominado "fissão binária", em que um septo é colocado numa posição de divisão, e uma célula separe-se em duas novas células filhas contendo uma cópia dos cromossomos e outros componentes necessários para a viabilidade e funcionalidade celular. Em E. coli, esse processo é comandado por pelo menos 12 proteínas que atuam no sítio da divisão. Entre elas destaca-se a proteína filamentosa temperatura sensível mutante Z (FtsZ) que exercem uma função central e tem sido a mais estudada entre elas. A FtsZ sofre montagem dinâmica em um anel contrátil (anel Z) na célula intermediária, que marca o local do futuro septo. O anel Z consiste em protofilamentos de subunidades da FtsZ polimerizados cuja formação é o primeiro passo conhecido na divisão do citoplasma. A montagem da proteína FtsZ no anel é necessária para o recrutamento e interação entre as outras proteínas envolvidas na divisão celular. O ftsZ é o gene responsável pela transcrição dessa proteína e está presente em quase todas as espécies de bactérias. A proteína FtsZ é homóloga da tubulina eucariótica; a estrutura tridimensional de ambas é notadamente semelhante, apesar do baixo nível de compatibilidade dos aminoácidos. Isto posto, a mesma estratégia utilizada na terapia contra o câncer pela inibição da tubulina, pode ser usada como base no desenvolvimento de inibidores da FtsK (BOBEREK et al., 2012; TRIPATHY; SAHU, 2019).

O cinamaldeído foi identificado como sendo capaz de ligar-se a proteína FtsZ, perturbando a formação do anel Z e inibindo sua dinâmica de montagem. Isto sugere que o cinamaldeído, uma pequena molécula de origem vegetal, é um composto com potencial para o *design* de drogas que atuem como agente anti-FtsZ (DOMADIA et al., 2007). A partir daí uma série de chalconas derivadas do cinamaldeído foram sintetizadas e exibiram atividade antibacteriana com melhor eficiência contra *S. aureus* ATCC25923, especialmente os compostos 3, 8 e 10 que exerceram atividade superior ou comparável a todos os medicamentos de referência. Esses compostos também mostraram um melhor resultado na atividade inibidora da divisão celular contra *S. aureus* ATCC25923 através do mecanismo anti-FtsZ, confirmados pelos ensaios de dispersão de luz e de GTPase (LI et al., 2015).

1.4.2.4. Inibição do fator de virulência

As bactérias compreendem um grande grupo de espécies capazes de infectar animais e plantas. A grande maioria desses patógenos possui uma capacidade limitada de infectar espécies hospedeiras, e são os chamados fatores de virulência, envolvidos nessa interação, que determinam o grau de patogenicidade dos diferentes agentes infecciosos. Fatores de virulência estão frequentemente envolvidos na interação direta com os tecidos do hospedeiro ou na ocultação da superfície bacteriana frente aos mecanismos de defesa do organismo infectado. Atenuar esses fatores é uma das abordagens utilizadas atualmente no desenvolvimento de novos agentes antimicrobianos (WU; WANG; JENNINGS, 2008).

A pouco tempo, quatro compostos contendo esqueleto típico das chalconas foram sintetizados e modularam significativamente alguns dos mais importantes fatores de virulência quando aplicados em concentrações subinibitórias; como a produção de biofilme e motilidade de *A. baumannii* e *P. aeruginosa*, e a produção de piocianina em *P. aeruginosa* (UŠJAK et al., 2019). Previamente, a chalcona 1,3-difenil-2-propen-1-ona foi capaz de inibir substancialmente a atividade da SrtA (enzima responsável pela ancoragem das proteínas de superfície relacionadas à virulência) com um IC₅₀ de 53,15 μ M, e a atividade da alpha hemolisina Hla (citotoxina formadora de poros) com um IC₅₀ de 17,63 μ M. Além disso, demonstrou reduzir a proteína A (SpA) em bactérias intactas, a ligação à fibronectina e a formação de biofilme (ZHANG et al., 2017).

1.4.2.5. Inibição das proteínas tirosina fosfatases (PTP)

As proteínas tirosina fosfatases (PTP), junto com as proteínas tirosina quinases (PTK), controlam o nível de fosforilação dos seus substratos alvo. Elas cumprem um papel crucial na

transdução de sinal de muitos eventos celulares, incluindo resposta imune, metabolismo, crescimento e transcrição gênica. Essas proteínas são secretas na célula hospedeira e atenuam as defesas imunológicas (DAN; DAI, 2020). Chalconas contendo grupos 1-naftil ou 2-naftil no lugar do anel B do esqueleto básico das chalconas foram ativas na inibição da PTP A em cepas de *M. tuberculosis* (CHIARADIA et al., 2008). Mais tarde, quatro derivados de chalconas inibiram a proteína YopH, uma PTP importante na patogênese do gênero *Yersinia*. Essas bactérias estão relacionadas principalmente com a ocorrência de síndromes gastrointestinais podendo levar a sepse (MARTINS et al., 2013).

1.4.2.6. Inibição das bombas de efluxo

Bombas de efluxo são proteínas transmembranares capazes de expulsar substratos do interior da célula para o meio externo. Esse processo de eliminação de compostos é importante na resistência bacteriana aos antibióticos, tanto intrínseca quanto adquirida. As bombas de efluxo possuem duas formas distintas pela qual obtêm energia; as bombas de efluxo primárias retiram energia da hidrólise do ATP (trifosfato de adenosina), enquanto as secundárias retiram energia de gradientes químicos formados por íons H⁺ ou Na⁺. De acordo com a estrutura e a forma de obtenção de energia, as bombas de efluxo em procariontes Gram-positivas e Gramnegativas são divididas em: Superfamília dos Facilitadores Majoritários - MFS; Pequena Família de Resistência a Múltiplas Drogas – SMR; Família de Extrusão de Multidrogas e Compostos Tóxicos – MATE; Família Resistência à Nodulação Divisão Celular - RND; Superfamília de Cassetes de Ligação de ATP – ABC (SHARMA; GUPTA; PATHANIA, 2019).

S. aureus são cocos Gram-positivos que exibem uma grande variedade de mecanismos de resistência a antibióticos e por isso são responsáveis por muitos casos de infecções fatais. Nessa espécie já foram identificados 14 tipos de bombas de efluxo de múltiplas drogas codificadas tanto em cromossomos quanto nos plasmídeos. Dentre elas, as mais estudadas são as da família MSF tendo a bomba de efluxo NorA como exemplo mais representativo. Cepas de *S. aureus* resistentes a meticilina geralmente superexpressam essa bomba de efluxo. Outra bomba de efluxo, a MepA, pertencente à família MATE, também é expressada por cepas mutantes de *S. aureus* (LAMUT et al., 2019).

A inibição das bombas de efluxo pode ser alcançada por várias estratégias; pela redução da expressão do gene da bomba; pela interrupção da montagem da bomba; pela redução da ligação do substrato por meios competitivos ou não competitivos; e pela perturbação da fonte

de energia necessária. Compostos que são capazes de realizar tais inibições são chamadas de inibidores de bomba de efluxo – EPI (SCHINDLER; JACINTO; KAATZ, 2013).

NorA é um sistema de efluxo resistente à fluoroquinolonas que é capaz de expulsar uma série de antibióticos e outras substâncias tais como norfloxacino (NOR), ciprofloxacino (CIP), brometo de etídio (EtBr) e compostos quaternários de amônia. O gene cromossomal que codifica a bomba de efluxo NorA é chamado de *norA*, foi identificado pela primeira vez em 1986 em uma cepa resistente a fluoroquinolonas. A proteína da NorA possui 388 aminoácidos compreendidos em 12 segmentos transmembranares e compartilha 44% de semelhança com a bomba de efluxo de múltiplas drogas Bmr do *B. subtilis* e 24% com a bomba de efluxo de tetraciclina Tet(A) da *E. coli*. A NorA usa a força motriz de prótons para energizar o transporte de compostos antimicrobianos através da membrana celular, por meio de um mecanismo de antiporta H⁺/droga (Figura 10). Nele ocorre o transporte do substrato e do co-substrato em direções opostas (COSTA S. S. et al., 2013; ZÁRATE et al., 2019).

Estudos demonstraram que o efluxo de EtBr e outros antibióticos, realizadas pela NorA, é sensível à clorpromazina (CPZ) e ao carbonil cianeto m-clorofenilhidrazona (CCCP). Esses compostos inibem o efluxo da NorA diminuindo a resistência aos antibióticos (KAATZ et al., 2003; MALLÉA et al., 2002; PAGÈS; MASI; BARBE, 2005; SABATINI et al., 2008).

Figura 10. Efluxo de múltiplas drogas por meio do mecanismo de antiporta H⁺/droga encontrado em bombas de efluxo do tipo MFS. Adaptado de Zárate et al. (2019).

Alguns estudos podem ser encontrados na literatura relacionando especificamente a inibição da bomba de efluxo NorA com chalconas e derivados. Em artigo recente, chalconas naturais isoladas das flores de *A. brachypoda*, se mostraram capazes de inibir a bomba de efluxo

NorA em cepas de *S. aureus* quando usadas em combinação com norfloxacino (REZENDE-JÚNIOR et al., 2020). Em outro estudo, curcuminóide sintético (1E,4E)-1,5-Di(tiofen-2il)penta-1,4-dien-3-ona, contendo dois anéis tiofeno, atuou como um EPI da bomba NorA também em combinação com o norfloxacino (OLIVEIRA et al., 2020). Alguns anos antes, uma série de chalconas foram testadas como inibidoras da NorA, e duas delas, demonstraram potencial de inibição comparável ao do já conhecido EPI, reserpina (HOLLER et al., 2012).

1.4.2.6.2. MepA

A MepA pertence à Família de Extrusão de Multidrogas e Compostos Tóxicos – MATE, e foi identificada pela primeira vez em cepas de *S. aureus* em 2005 por *Kaatz* e colaboradores. Ela é capaz de extrudar vários biocidas e agentes antimicrobianos clinicamente relevantes. O gene responsável pela codificação dessa proteína é chamado de *mepA* (KAATZ; MCALEESE; SEO, 2005). Os transportadores transmembranares do tipo MATE usam gradientes H⁺ e/ou de Na⁺ para conduzir o efluxo de compostos poliaromáticos e drogas catiônicas (DU et al., 2018). A proteína da MepA possui 451 aminoácidos em 12 segmentos transmembranares e apresenta identidade de 26% com os transportadores MATE CdeA de *C. difficile* e 21% com NorM de *V. parahaemolyticus* (COSTA S. S. et al., 2013).

A quantidade de estudos de modulação da bomba de efluxo MepA com chalconas não é tão extensa, contudo podemos citar duas publicações onde uma chalcona e uma bis-chalcona contendo anel tiofeno, foram capazes de inibir a MepA de forma mais eficiente que o tradicional EPI, CPZ, em combinação com o antibiótico ciprofloxacino (OLIVEIRA et al., 2020; SILVA et al., 2021).

1.4.3. Atividade ansiolítica

A ansiedade e a depressão são as respostas mais comuns dos organismos humanos ao estresse repetitivo. A primeira está relacionada à avaliação de risco potencial e envolve a incerteza quanto a uma ameaça, é caracterizada por um estado de angústia mais difuso com sintomas de hiperexcitação e preocupações inúteis. O receptor do ácido γ -aminobutírico A (GABA_A) está relacionado com a modulação dos níveis de ansiedade, insônia e memória. Os receptores GABA_A são proteínas de membrana heteropentamérica que formam um canal de íons Cl⁻ que regula a maioria das inibições de neurotransmissões no sistema nervoso central dos mamíferos. O receptor GABA_A faz parte da superfamília de canais de íons controlados por ligante que também incluem os receptores de acetilcolina nicotínica (nAChRs), de serotonina (5HT3) e de glicina (GlyR). São formados por vários tipos de subunidades (α , β , γ , $\delta \in \varepsilon$)

organizadas pseudo-simetricamente em torno do canal condutor de íons central. Seu ligante endógeno é o ácido γ-aminobutírico (GABA). Déficits na neurotransmissão mediadas pelo GABA estão associadas a ocorrência de distúrbios convulsivos tais como epilepsia, transtornos de ansiedade, esquizofrenia e transtorno obsessivo compulsivo. Estudos farmacológicos sugerem os benzodiazepínicos (BZDs) e outros moduladores positivos do receptor GABA_A reduzem a ansiedade enquanto os antagonistas do receptor GABA_A competitivos e não competitivos e os agonistas inversos dos BDZs são ansiogênicos (BARNARD; DARLISON; SEEBURG, 1987; LIU et al., 2015; MÖHLER, 2012; OLSEN; TOBIN, 1990). Os BZDs se ligam ao receptor GABA_A num sítio diferente do sítio ortostérico e exerce modulação alostérica modificando a capacidade do receptor GABA_A de ativar seu sitio endógeno (MARDER, 2012; OLSEN, 2015).

Já se sabe que alguns flavonóides (MARDER, 2012) e chalconas (SALEHI et al., 2021) podem atuar no receptor GABAA com efeitos similares aos BZDs. Por exemplo, a chalcona isoliquiritigenina apresentou modulação alostérica positiva nos receptores GABA_A com efeitos hipnóticos (CHO et al., 2011), antidepressivos (WANG et al., 2008) e ansiolíticos (JAMAL; ANSARI; RIZVI, 2008). No estudo de Jamal, Ansari e Rizvi (2008), a buteína também apresentou ação ansiolítica sem efeitos colaterais sedativos. Em outro estudo, Wang at al. (2008) identificaram efeitos antidepressivos na buteína bem como da isoliquiritina. Também existem diversos relatos de efeitos antinociceptivos de vários derivados de chalconas em ratos como modelo animal (CORRÊA et al., 2001; DE CAMPOS-BUZZI et al., 2006; MOHAMAD et al., 2010; VIANA; BANDEIRA; MATOS, 2003). Mais recentemente, estudos de atividade ansiolítica têm sido conduzidos com zebrafish (Danio rerio) como modelo animal pois seu genótipo tem 70% de homologia com os seus receptores de neurotransmissores dos mamíferos (CORRÊA 2001). Nesse et al.. modelo, as chalconas (2E,4E)-1-(2-hidroxi-3,4,6-trimetoxifenil)-5-fenilpenta-2,4-dien-1-ona (FERREIRA et al., 2019) e N-{(4'-[(E)-3-(4-fluorofenil)-1-(fenil)prop-2-en-1-ona]} (XAVIER et al., 2020) demostraram forte evidência de suas propriedades ansiolíticas, sendo que a primeira com ação comprovadamente mediada por receptores GABAA.

1.5. ESPECTROSCOPIA MOLECULAR

1.5.1. Espectroscopia vibracional

O espectro vibracional foi estudado pela primeira vez na absorção de bandas na região do infravermelho (IV), que foi a primeira região não-visível das radiações eletromagnéticas a

ser descoberta. O astrônomo William Herschel foi o responsável por tal revelação em 1800. Porém, apenas com o surgimento da teoria quântica foi possível compreender a origem dos espectros moleculares na região do visível, ultravioleta (UV) e infravermelho (IV). Na primeira conferência Solvay em 1911, N. Bjerrum introduziu a ideia de que as moléculas estão associadas a três tipos de energia de diferentes magnitudes - vibracional, rotacional e translacional - o que poderia fornecer recursos separados em espectros. A equação de onda de Schrödinger conseguiu resolver com grande sucesso as características do espectro de IV. Ela mostrou que a região de IV médio $(4000 - 400 \text{ cm}^{-1})$ correspondia às transições compreendidas entre vibracional e rotacional de níveis de energia mais próximos; O espectro de IV próximo (14000 - 4000 cm⁻¹) originava-se de sobretons ou combinações dos modos vibracionais fundamentais e o espectro IV distante $(400 - 10 \text{ cm}^{-1})$ advinha de vibrações fundamentais de baixa frequência, por exemplo, modos de rede cristalina de sólidos ou rotacionais puros na fase gasosa. Mais tarde, em 1928, também se descobriu o fenômeno de espalhamento inelástico de fótons de luz, chamado de Efeito Raman em homenagem ao físico Chandrasekhara Venkata Raman. Esse método consiste numa segunda via para estudar as faixas de frequência associadas as vibrações e rotações moleculares. Uma das principais aplicações da espectroscopia vibracional está relacionada com a análise de estruturas moleculares, uma vez que bandas de absorção individuais estão associadas com grupos funcionais dentro de moléculas orgânicas (GRIFFITHS; CHALMERS, 2002).

As vibrações moleculares podem variar desde o simples movimento entre dois átomos acoplados em moléculas diatômicas até movimentações mais complexas em grandes moléculas multifuncionais. O número teórico de bandas corresponde ao número de vibrações fundamentais e podem ser calculados a partir dos graus de liberdade da molécula. Cada átomo possui três graus de liberdade correspondentes às três coordenadas cartesianas (x, y e z). O número de graus de liberdade de uma molécula é igual ao número total de graus de liberdade dos átomos individuais, portando uma molécula contendo N átomos possui 3N graus de liberdade. No caso de moléculas não-lineares, três dos graus de liberdade descrevem a rotação e três descrevem a translação. Assim tem-se um total de 3N - 6 graus de liberdade. Já em moléculas lineares, apenas 2 graus de rotação (porque a rotação sobre seu eixo de linearidade não muda as posições dos átomos) e 3 de translação são descritos, totalizando 3N - 5 graus de liberdade (YADAV, 2013).

Cada modo de vibração envolve deslocamentos praticamente harmônicos dos átomos em relação a sua posição de equilíbrio. Para cada modo, todos os átomos vibram em uma determinada frequência característica, v_i . A energia potencial, V(r), de um oscilador harmônico é função da distância entre os átomos, r. Em qualquer modo vibracional simples os átomos vibram em movimento harmônico e os estados de energia vibracional podem ser calculados conforme a equação 1 (GRIFFITHS; CHALMERS, 2002).

$$V_{i\nu} = h\nu_i \left(n_i + \frac{1}{2} \right) \tag{1}$$

h é a constante de Planck, v_i é a frequência do modo de vibração natural e n_i é o número quântico no modo vibracional *i* (n_i =1,2,3...).

Já a frequência natural de vibração de um oscilador harmônico é determinada pela constante de força elástica K (rigidez da ligação química) e pelas massas ($m_1 e m_2$) dos átomos unidos. A frequência natural de vibração é dada pela equação 2 que é derivada da lei de Hooke (GRIFFITHS; CHALMERS, 2002).

$$\nu_i = \frac{1}{2\pi} \cdot \sqrt{\frac{K}{\mu}} \qquad (2)$$

 $\mu = \frac{m_1 \cdot m_2}{m_1 + m_2} \text{ (massa reduzida)}$

1.5.1.1. Espectroscopia no infravermelho (IV)

Quando as moléculas absorvem radiação IV são excitadas para um estado energético superior, assim como ocorre em outros processos de absorção em que a energia é quantizada. Absorção da radiação IV corresponde a energia da ordem de 8 a 40 kJ/mol que são capazes de aumentar a amplitude dos movimentos vibracionais das ligações covalentes nas moléculas. Contudo nem todas essas ligações são capazes de absorver radiação IV mesmo em frequências exatamente iguais à do movimento vibracional, apenas as ligações com momento de dipolo que variam no tempo são capazes de absorver radiação no infravermelho. Assim uma ligação simétrica que tenha grupos idênticos ou quase idênticos em cada ponta não absorverá radiação IV. O espectro de IV pode servir como uma espécie de "impressão digital" da molécula, sendo denominada de *fingerprint* a região abaixo de 1500 cm⁻¹, pois cada composto tem um padrão de absorção único nesta região tornando impossível sobreposição de bandas, já acima disto, compostos parecidos podem apresentar espectros semelhantes. As absorções de cada tipo de ligação covalente são encontradas apenas em uma pequena faixa do espectro vibracional, fora dela, provavelmente aquele pico deve ser atribuído à alguma outra ligação (PAVIA et al., 2010).

Na Figura 11 estão resumidas algumas faixas do espectro de IV onde ocorrem estiramentos de ligações químicas típicas.

		Freque	ncia (cm ⁻ ')			
4000	2500	2000	1800	1650	1550	650
С - Н О - Н N - Н	C ≡ C C ≡ N X=C=Y (C,O,N,S	Poucas faixas	C = 0	C = N C = C N	C - C = O N = O	C - Cl C - O - N

Figura 11. Regiões aproximadas em que alguns tipos de ligações químicas absorvem no IV e produzem estiramentos. Adaptado de Pavia et al. (2010).

Os modos vibracionais mais simples que dão origem a absorção no IV são o estiramento e o dobramento. Contudo outros tipos mais complexos são também ativos para radiação IV. No estiramento a distância entre os átomos aumenta e diminui, porém eles continuam no mesmo eixo da ligação. Sua energia é baseada na lei de Hooke e é dada por $E = \frac{1}{2}k_b(r - r_0)^2$, em que k_b representa o parâmetro de rigidez da ligação química e r_0 é a posição de equilíbrio da ligação. O estiramento pode ocorrer de duas maneiras: simétrico – quando o movimento dos átomos em relação ao átomo comum (ou central) está simultaneamente na mesma direção ao longo do eixo da ligação; ou antissimétrico - quando um átomo se aproxima do átomo comum enquanto o outro se afasta dele. Já no dobramento, as posições dos átomos mudam em relação aos seus eixos originais de ligações. As vibrações de dobramento podem ocorrer no mesmo plano ou não, e são classificadas de quatro maneiras: Scissoring - o movimento dos átomos ocorre na direção oposta, com mudança no ângulo que eles formam com o átomo central; Rocking – os átomos se movimentam na mesma direção em relação aos eixos de ligação; Wagging – dois átomos se movem simultaneamente acima e abaixo do plano em relação ao átomo comum; e *Twisting* – um dos átomos sobe e o outro desce em relação ao plano do átomo comum. A energia dos modos de dobramento também é baseada na lei de Hooke como $E = \frac{1}{2}k_{\theta}(\theta - \theta_0)^2$, sendo k_{θ} o parâmetro de rigidez angular da ligação e θ_0 o ângulo de equilíbrio. Conforme mencionado anteriormente, existem outros tipos de modos normais que podem ser ativos no IV, um exemplo disso são os modos de torção ou diedral, cuja energia é usada principalmente para corrigir a energia total. A energia do modo de torção deve ser adicionada aos termos de estiramento, dobramento e às interações não-ligadas para fazer com que a energia total esteja de acordo com os experimentos ou cálculos quânticos rigorosos. Alguns autores tratam a energia dos modos de torção da mesma forma como os modos de dobramento, uma função simples do tipo $E = \frac{1}{2}k_{\chi}(\chi - \chi_0)$, em que k_{χ} é o parâmetro de rigidez do ângulo de torção e χ_0 é o ângulo de torção de equilíbrio. Esses parâmetros são determinados a partir do ajuste da curva. Cada modo de torção possui parâmetros únicos atribuídos para cada quarteto de átomos com base nos seus tipos, por exemplo, C-C-C, C-O-C-N e H-C-C-H (HINCHLIFFE, 2008; YADAV, 2013). A Figura 12 mostra exemplos de modos vibracionais de estiramento e dobramento de um grupo CH₂ e de torção de um grupo C-C-C.

O equipamento que obtém o espectro de absorção no infravermelho é chamado de "espectrômetro de infravermelho". Dois tipos de espectrômetros são comumente utilizados nas análises químicas: os instrumentos dispersivos e os por transformada de Fourier (FT). Os do primeiro tipo produzem uma radiação no infravermelho que é dividida em dois feixes idênticos, um dos feixes passa pela mostra e o outro serve como referência. Então os feixes chegam em um monocromador que dispersa cada um deles em um espectro contínuo de frequências de luz infravermelha de forma alternada e os envia a uma grade de difração. Essa rede de difração varia o comprimento de onda da radiação que chega a um detector. Este por sua vez sente a razão entre as intensidades dos feixes de referência e o da amostra de forma que se identifica quais frequências foram absorvidas e quais não foram. Em seguida o sinal é amplificado e registrado, então obtém-se o espectro no domínio da frequência. Já o equipamento com FT produz um padrão chamado "interferograma", que é complexo, mas nele estão contidas todas as frequências que formam o espectro infravermelho. O interferograma consiste num gráfico de intensidade versus tempo, daí aplica-se a operação matemática conhecida como transformada de Fourier para convertê-lo num espectro que seja um gráfico de intensidade versus frequência (PAVIA et al., 2010).

Figura 12. Exemplos de modos vibracionais de estiramento e dobramento de um grupo CH_2 e torção de um grupo C-C-C-C. Os sinais + e – indicam movimentos perpendiculares ao plano do papel. Adaptado de Yadav (2013).

1.5.1.2. Espectroscopia Raman

Quando uma amostra transparente é irradiada por um feixe de luz monocromática com número de onda $\tilde{v_0}$, a maioria da radiação passará pela amostra sem nenhuma alteração, enquanto uma pequena porção de luz será espalhada. Uma análise do feixe de luz espalhado mostrará que uma boa parcela da radiação possui o mesmo número de onda da radiação incidente (Espalhamento Rayleigh), porém ele também conterá componentes discretos com número de onda diferentes, ou seja, aparecerão novas linhas no espectro da radiação espalhada em pares posicionados simetricamente distantes das linhas de Rayleigh. Essas linhas terão número de onda, $\widetilde{\nu'} = \widetilde{\nu_0} \mp \widetilde{\nu_M}$, em que o número de onda $\widetilde{\nu_M}$ corresponde às transições de níveis de energia vibracional ou rotacional (raramente eletrônica) de um sistema molecular. O aparecimento dessas linhas no feixe de luz espalhada é chamado de Efeito Raman ou Espalhamento Raman (GRIFFITHS; CHALMERS, 2002). O par de linhas espectrais simetricamente deslocados da linha Rayleigh são chamados de linha Stokes, quando possuem frequência menor que a radiação incidente, e linha *anti-Stokes*, quando possui frequência maior. Quando um laser interage com os elétrons de uma molécula causando polarização, a energia salta para um estado denominado virtual. No processo de Rayleigh não há nenhuma mudança de energia e, consequentemente, a luz retorna ao mesmo estado. Já no espalhamento Raman, ocorre que, ou o estado vibracional fundamental (m) leva à absorção de energia pela molécula e sua promoção a um estado vibracional excitado de alta energia (n), ou devido à energia térmica, algumas moléculas podem estar presentes em um estado excitado como (n) e ao espalhar-se retornam ao estado fundamental (m) (SMITH; DENT, 2005). A Figura 13 resume os processos de espalhamento Rayleigh e Raman.

Figura 13. Diagrama dos processos de espalhamento Rayleigh e Raman. Adaptado de Smith e Dent (2005).

Pode-se observar que a espectroscopia de IV e Raman utilizam a radiação de forma diferente. Na espectroscopia de IV a energia direcionada para a amostra varia numa faixa de frequências, e quando uma certa frequência incidente corresponde exatamente ao modo de vibração da molécula, ocorre a absorção promovendo-a a um estado vibracional excitado. Contrariamente, a espectroscopia Raman utiliza uma única frequência de radiação que ao incidir sobre a molécula espalha-se e feixes com energia diferente da radiação incidente são detectados. A distância entre a frequência da radiação incidente e da radiação espalhada ($\Delta \nu$) corresponde à absorção ou emissão no IV. Contudo os espectros de IV e Raman não são idênticos, ao passo que no Raman a radiação interage com a molécula polarizando (distorcendo) as nuvens eletrônicas e produzindo um estado de energia capaz de movimentar os núcleos atômicos (vibração), na radiação IV, a vibração molecular está relacionada com o momento dipolo oscilante das ligações químicas. Por isso pode acontecer de um modo de vibração ser ativo no Raman e não ser ativo no IV e vice-versa. Sendo assim, a espectroscopia Raman não é uma técnica que substitui a espectroscopia de infravermelho ou o contrário, na verdade, cada uma delas possui grande importância no estudo dos modos vibracionais, e por vezes, podem ser técnicas complementares (SMITH; DENT, 2005).

De forma simplificada um modo vibracional será ativo no espectro de infravermelho quando $\left(\frac{\partial \mu_i}{\partial Q_k}\right)_0 \neq 0$, e será ativo no espectro Raman quando $\left(\frac{\partial \alpha_{ij}}{\partial Q_k}\right)_0 \neq 0$, em que μ_i é o momento dipolo, α_{ij} é o tensor de polarizabilidade, e Q_k é a *k-ésima* coordenada normal associada ao modo de vibração de número de onda $\widetilde{\nu_k}$ (GRIFFITHS; CHALMERS, 2002).

A instrumentação para realização da espectroscopia Raman é em princípio simples. Um intenso feixe de radiação monocromática passa através de uma amostra e a luz espalhada em ângulos retos com o feixe incidente é analisada por um espectrofotômetro. Filtros são usados para obter uma radiação monocromática. O espectrógrafo usado na espectroscopia Raman deve ter grande poder de coleta, portanto, prismas especiais de alta resolução e foco curto são utilizados (YADAV, 2013).

1.5.2. Espectroscopia de ressonância magnética nuclear (RMN)

A ressonância magnética nuclear (RMN) é um método espectroscópico muito importante na identificação de compostos químicos. Enquanto a espectroscopia de IV mostra os grupos funcionais presentes num composto, na RMN são os núcleos atômicos que são estudados, sendo os mais comuns, hidrogênio e carbono. A RMN oferece informações sobre o número de átomos magnéticos distintos do isótopo estudado. Então a junção de técnicas como RMN e IV é normalmente suficiente para a determinação da estrutura de um composto desconhecido (PAVIA et al., 2010).

A RMN resulta da ocorrência de transição de níveis energéticos correspondentes às diferentes orientações permitidas do spin nuclear quando o núcleo se encontra sujeito à ação de um campo magnético. Essas diferenças de energia só são percebidas quando esse campo magnético é muito intenso. A primeira experiência de RMN foi concebida com o objetivo de se medir o spin nuclear, no entanto, o núcleo de um elemento não dava origem a apenas um sinal, mas dava origem a vários sinais numa região vizinha daquele átomo. Por certo, a ressonância de um núcleo é afetada pela estrutura molecular onde aquele átomo está inserido. Um equipamento que realiza a RMN é constituído basicamente de uma fonte de campo magnético numa região onde é colocada a amostra associada a uma fonte de radiofrequência que emite radiação através de um circuito espiral envolvendo a amostra. A forma de apresentar os espectros consiste em identificar a posição do sinal de ressonância pelo seu desvio em relação a posição do sinal de um núcleo selecionado como referência (ROCHA GONSALVES; PINHO E MELO, 2007).

1.5.3. Espectroscopia de massa (EM)

Os pilares para a técnica analítica denominada de espectroscopia de massa (EM) foram os estudos da relação massa/carga de J. J. Thomson e os estudos da deflexão magnética dos raios catódicos de Wien. Contudo esse método apenas se desenvolveu nos últimos 50 anos quando foram construídos equipamentos baratos e cofiáveis. A espectroscopia de massa é bastante importante para a biotecnologia no exame da sequência de proteínas, oligonucleotídeos e polissacarídeos. Também pode ser usada no desenvolvimento de fármacos, testes clínicos, inclusive para marcadores de muitos tipos de câncer, e detecção de drogas ilícitas ou anabolizantes. A amostra estudada por EM pode ser gás, líquida ou sólida (PAVIA et al., 2010).

Um aparelho de EM possui cinco compartimentos: A unidade de entrada de amostra – responsável por trazer a amostra do meio exterior para um ambiente com pressão reduzida bem como produzir um fluxo constante de moléculas no estado gasoso; Fonte de ionização – região onde essas moléculas são transformadas em íons em fase gasosa; Analisador de massa – separa os íons com base na razão massa/carga; Detector – quantificam os íons analisados; e Sistema de dados – coleta as informações e produz o espectro de massa (YADAV, 2013).

Nessa técnica analítica, a etapa que pode variar é a fonte de ionização. Existem vários métodos para converter o fluxo de moléculas gasosas em íons. O mais comum é a ionização por elétrons, quando ocorrer a colisão de um feixe de elétrons com a corrente gasosa produzindo fragmentos de moléculas carregadas positivamente. Nesse processo pode ocorrer a formação de moléculas carregadas negativamente pela absorção de elétrons, porém elas são absorvidas por placas repelentes. Em alguns equipamentos é possível inverter a polaridade e analisar os íons negativos ao invés dos positivos. O excesso de energia cinética transmitida à amostra leva a fragmentação dos íons moleculares de forma sistemática e reproduzível, o que permite a construção de bibliotecas espectrais de milhares de compostos essenciais na identificação rápida de moléculas. Além da ionização por elétrons também é bastante comum nos equipamentos a formação de íons através da ionização química. Nesse caso, o fluxo de moléculas da amostra encontra um fluxo de gás reagente ionizado, normalmente metano. Quando eles se encontram ocorre a formação de íons de várias maneiras, com transferências de prótons, transferência de elétrons e formação de íons secundários (PAVIA et al., 2010; YADAV, 2013).

1.6. CÁLCULOS COMPUTACIONAIS

1.6.1. Teoria do Funcional da Densidade (DFT)

A Teoria do Funcional da Densidade (DFT) surgiu como alternativa aos tradicionais métodos *ab initio* e semi-empíricos no estudo de propriedades no estado fundamental de grandes sistemas moleculares orgânicos, inorgânicos, metálicos e semicondutores. Por essa razão, muitas áreas têm empregado essa técnica no desenvolvimento de fármacos, agroquímicos, polímeros, complexos organometálicos, aglomerados para catálise, bem como no estudo de superfície no estado sólido, eletroquímica e microeletrônica. Domínios estes que até então eram inacessíveis aos métodos de natureza *ab initio* convencionais. Os princípios da DFT estão atrelados à teoria da função de onda (Ψ) e à equação de Schrödinger (MORGON; CUSTODIO, 1995).

Qualquer problema envolvendo a estrutura eletrônica da matéria pode ser abordado pela equação de Schrödinger. Para um sistema atômico ou molecular contendo N elétrons no estado estacionário tem-se a equação 3.

$$\widehat{H}\Psi = E\Psi \quad (3)$$

E é a energia eletrônica, Ψ é a função de onda e \hat{H} é o operador Hamiltoniano, que é representado na equação

$$\widehat{H} = \sum_{i=1}^{N} \left(-\frac{1}{2}\nabla_{i}^{2}\right) + \sum_{i=1}^{N} \nu(r_{i}) + \sum_{i< j}^{N} \frac{1}{r_{ij}} \qquad (4)$$

em que

$$v(r_i) = -\sum_{\alpha} \frac{Z_{\alpha}}{r_{i\alpha}} \qquad (5)$$

é o potencial de atuação "externo" no elétron *i*, sendo Z_{α} o potencial devido aos núcleos de cargas e r_i as coordenadas espaciais do elétron *i*. A função de onda (Ψ) contém todas as informações para descrever um sistema quanticamente, porém não possui significado físico em si, já $|\Psi|^2$ é interpretada como sendo proporcional a probabilidade de encontrar o sistema numa determinada posição em relação a um sistema de coordenadas. Cada elétron pode ser descrito por três coordenadas cartesianas $r_k = (x_k, y_k, z_k)$ e uma coordenada spin denominada σ_k . Então se numa molécula há N elétrons, sua função de onda será descrita em 4N coordenadas. Dessa forma $|\Psi|^2$ pode ser melhor descrito como $|\Psi(r^N, \sigma^N)|^2 dr^N$ que significa a probabilidade de encontrar o sistema numa posição entre as coordenadas $r^N e r^N + dr^N e$ com coordenadas spin σ^N . A função $\Psi(r^N, \sigma^N)$ pode ser simplificada para três dimensões (3N coordenadas) pela equação 6

$$P(r) = \int_{a}^{b} \Psi^* \Psi \, dr^N \quad (6)$$

em que Ψ^* é o complexo conjugado de Ψ e $\int dr^N$ significa a integração sobre as 3N coordenadas espaciais e somando sobre as N coordenadas de spin. Assim tem-se uma função resultante conhecida como função densidade de probabilidade P(r). Se a densidade de probabilidade for multiplicada pelo número de elétrons N, tem-se a densidade eletrônica $\rho(r)$, que descreve a distribuição de carga de um sistema multieletrônico. O diferencial da DFT é justamente trabalhar com a densidade eletrônica ao invés das funções de ondas totais como fazem os outros métodos de química quântica quando da resolução da equação de Schrödinger, bem como ela pode ser comparada com a densidade obtida experimentalmente (FIRME, 2007; PARR; YANG, 1989).

Os primeiros a descrever a energia de um átomo em função da densidade eletrônica foram Thomas e Fermi em 1927, mais tarde Slater criou uma expressão, originalmente derivada das equações de Hartree-Fock, que representava um funcional de densidade para a energia de troca. Para uma melhor aproximação foi acrescentado um parâmetro empírico α na equação que ficou conhecida como Hartree-Fock-Slater. Em 1964, Hohenberg e Kohn desenvolveram as bases para a DFT quando postularam seu primeiro teorema que prova que a energia do estado fundamental de qualquer sistema eletrônico é determinada por um funcional da densidade do elétron. Isto quer dizer que, em princípio, só precisamos saber a densidade de elétrons no espaço tridimensional e não a função de onda completa, a fim de calcular qualquer propriedade no estado fundamental tal como a energia. Já o segundo teorema estabelece que o funcional de Hohenberg-Kohn (F_{HK}) fornece a energia mais baixa (estado fundamental), se e somente se, a densidade de entrada é a densidade do estado fundamental, ρ_0 . Contudo, existe um problema pois esses teoremas não fornecem nenhuma pista quanto à natureza do funcional de densidade nem como buscá-lo. O artigo publicado em 1965 por Kohn e Sham fornecem uma solução prática para esse problema com uma modificação nas equações de Hartree-Fock (HINCHLIFFE, 2008).

Sendo assim a energia de um sistema multieletrônico sob um determinado potencial externo v(r) pode ser escrito por

$$E_{\nu}[\rho(r)] = \int \nu(r)\,\rho(r)dr + F[\rho] \qquad (7)$$

em que F é o funcional universal de ρ , que independe do potencial v(r). Caso a função densidade exata seja substituída por uma função aproximada $\tilde{\rho}$, a energia aumentará em relação a energia E_v , como mostra a equação 8 (MORGON; CUSTODIO, 1995).

$$\tilde{E} = \tilde{E}[\tilde{\rho}] = \int v(r)\,\tilde{\rho}(r)dr + F[\tilde{\rho}] \ge E_0 = E[\rho] \tag{8}$$

A DFT inicia com a energia sendo escrita como funcional da densidade eletrônica total para uma dada posição dos núcleos atômicos, $E[\rho]$. Essa energia total é decomposta em termos de energia cinética, energia eletrostática (Coulomb) e um termo que combina todos os efeitos de troca e correlação, $E[\rho] = T[\rho] + U[\rho] + E_{XC}[\rho]$. A densidade eletrônica total é decomposta em densidades de partículas únicas que se originam de funções de onda de uma partícula livre, $\rho(r) = \sum_{ooc} |\Psi(r)|^2$. Então a DFT requer que mediante variação da densidade total de elétrons, a energia total assuma um mínimo, $\frac{\partial E}{\partial \rho} = 0$. Isso leva a condições para formar uma função de onda na forma da equação de Kohn-Sham de uma partícula efetiva, $\left[-\frac{1}{2}\nabla^2 + V_C(r) + u_{XC}(r)\right]\Psi_i = \varepsilon_i\Psi_i$. Essa equação deve ser resolvida por um método de campo autoconsistente iterativo (Figura 14) similar ao usado na teoria de Hartree-Fock (WIMMER, 2012).

Figura 14. Método de campo autoconsistente iterativo para determinação da energia e propriedades de um sistema eletrônico. Adaptado de Morgon e Custodio (1995).

1.6.2. Docagem molecular

As interações enzima-substrato são essenciais para os processos biológicos bem como para a atuação de muitos fármacos. Atualmente o conceito da interação proteína-substrato pelo modelo "chave e fechadura" foi remodelado em função da flexibilidade conformacional das proteínas, e é mais comum hoje encontrar denominações como sítio ativo, sítio de ligação, substrato ou ligante. Já se sabe que os sítios ativos das proteínas não são estáticos, ao contrário, eles são remodelados durante a interação com os substratos. Esse entendimento pode explicar por que alguns ligantes não são substratos de algumas proteínas embora satisfaçam os requisitos específicos para se ligarem no sítio ativo. As interações proteína-substrato são dinâmicas e mais complexas do que a abordagem básica "chave e fechadura", esse efeito de "ajuste" induzido pelo substrato torna o estudo dos encaixes moleculares mais sofisticados em muitos aspectos, e necessitam não raramente, de uma abordagem química computacional (TRIPATHI; BANKAITIS, 2018).

A Docagem Molecular é uma técnica *in silico* que analisa as possíveis conformações e orientações de uma molécula num sítio de ligação de uma macromolécula, ranqueados por funções de pontuação, utilizando algoritmos específicos. Essa técnica é amplamente utilizada na previsão dos complexos proteína-substrato, em análises de estrutura/função, bem como na descoberta de novas drogas pelo desenvolvimento de métodos de encaixe mais precisos (PINZI; RASTELLI, 2019). Existem diversos *softwares* que realizam a docagem molecular, dentre eles destaca-se o *AutoDock4* (MORRIS et al., 1998), o *AutoDock Vina* (TROTT; OLSON, 2010), o *GOLD* (JONES et al., 1997), o *FlexX* (RAREY et al., 1996) e o *Molegro Virtual Docker* (THOMSEN; CHRISTENSEN, 2006). Também é possível encontrar diversos serviços online para simulação de docagem molecular (DA SILVEIRA et al., 2019).

Os processos de docagem possuem dois pilares básicos, um algoritmo eficiente para procura das posições do ligante, e um sistema robusto de ranqueamento dessas posições. Os algoritmos de busca podem ser classificados como sistemáticos, estocásticos ou determinísticos. Os sistemáticos realizam a pesquisa incrementando os graus de liberdade do ligante de forma regular, os estocásticos realizam a busca mudando aleatoriamente os graus de liberdade do ligante e os determinísticos modificam a orientação do ligante em função do estado obtido na interação anterior, o novo estado tem valor de energia igual ou inferior ao anterior (TORRES et al., 2019). Um dos algoritmos mais utilizados é o Algoritmo Genético (AG), que imita as principais características da evolução darwiniana e aplica a genética Mendeliana. Na docagem molecular, o arranjo particular de um ligante e uma proteína pode ser definido por um

conjunto de valores que descrevem a tradução, orientação e conformação do ligante em relação à proteína. Estas são as variáveis de estado do ligante e, no AG, cada variável de estado corresponde a um gene. O estado do ligante corresponde ao genótipo, enquanto suas coordenadas atômicas correspondem ao fenótipo. Então a energia de interação proteína-ligante é avaliada usando uma função de pontuação. Pares aleatórios de indivíduos são acasalados usando um processo de cruzamento, no qual novos indivíduos herdam genes de um dos pais. Além disso, alguns descendentes sofrem mutações aleatórias, na qual um gene muda de forma randômica. A seleção dos filhos da geração atual ocorre com base na aptidão do indivíduo. Assim as soluções mais adequadas ao seu ambiente se reproduzem, enquanto as menos adequadas morrem. Existe uma variação desse algoritmo que é chamado Algoritmo Genético Lamarckiano (AGL), nele ocorre uma minimização de energia local, cuja busca não é aleatória como no AG. Se essa configuração for melhor que a configuração anterior, essa configuração é passada para uma nova geração (MORRIS et al., 1998). Outro algoritmo também bastante utilizado, implementado no AutoDock Vina, é o Local Search global optimizer, nele uma sucessão de etapas consistindo em uma mutação e uma otimização local são realizadas, sendo cada etapa aceita de acordo com o critério de Metropolis. Esse algoritmo usa o método Broyden-Fletcher-Goldfarb-Shanno para a otimização local, que é um método quasi-Newton bastante eficiente (TROTT; OLSON, 2010).

As funções de pontuação são utilizadas para determinar o modo de ligação e o local de ligação de um ligante a uma proteína, prever a afinidade de ligação entre a proteína e o ligante, e para triagem virtual, que identifica potenciais drogas para um determinado alvo pesquisando em um vasto banco de dados de ligantes. Essas funções de pontuação são classificadas atualmente como sendo: baseadas na física, empíricas/semi-empíricas, baseada no conhecimento e baseadas em aprendizado de máquina (LI; FU; ZHANG, 2019).

Dentre as funções baseadas na física podemos destacar aquelas baseadas em campos de força, cujos parâmetros contém termos para forças intramoleculares (ligação, ângulo e termos diédricos) entre átomos ligados, mais termos de energia das forças intermoleculares entre átomos não ligados (TRIPATHI; BANKAITIS, 2018). Contudo ela desconsidera efeitos entrópicos e do solvente, portanto, pode-se incorporar à essas funções, termos de entropia de torsão do ligante bem como termos do efeito da solvatação de forma implícita. Mais recentemente foram desenvolvidas funções de pontuação baseadas na mecânica quântica, que embora resolva problemas relacionadas às interações covalentes, polarização e transferência de carga no acoplamento, possuem um custo computacional maior. Por essa razão surgiram as

funções hibridas, que agregam aspectos da mecânica molecular e da mecânica quântica (LI; FU; ZHANG, 2019). As funções empíricas estimam a energia livre da ligação não covalente proteína-ligante como sendo a soma de uma série de interações localizadas. Dentre os principais termos que contribuem para a função tem-se as ligações de hidrogênio, interações hidrofóbicas, efeitos entrópicos etc. Esses termos são ponderados por fatores empíricos obtidos através de regressões feitas com dados de interações já conhecidos. Quando se incorporam termos energéticos empíricos com termos baseados em campo de força em uma função de pontuação, diz-se que ele é semi-empírica. Em contraste com as funções de pontuação baseadas no campo de força, os termos de pontuação semi-empíricos estimam com mais precisão as energias de ligação, contabilizando os efeitos entrópicos e de solvatação que reconhecidamente afetam as interações biológicas em meio aquoso (TRIPATHI; BANKAITIS, 2018).

O *Autodock4*, um dos *softwares* mais utilizados, possui uma função de pontuação que usa um campo de força de energia livre semi-empírico para prever energias livres de ligação proteína-substrato. Os termos da equação incluem avaliações por pares de átomos para interações de Van der Waals, ligação de hidrogênio, interações eletrostáticas e solvatação (HUEY et al., 2007). Abaixo são mostradas as equações utilizadas para ranquear as conformações do ligante do *Autodock4*.

$$\Delta G = \left(V_{ligado}^{L-L} - V_{n\bar{a}o-ligado}^{L-L} \right) + \left(V_{ligado}^{P-P} - V_{n\bar{a}o-ligado}^{P-P} \right) + \left(V_{ligado}^{P-L} - V_{n\bar{a}o-ligado}^{P-L} + \Delta S_{conf} \right)$$
(9)
$$V = W_{vdw} \sum_{ij} \left(\frac{A_{ij}}{r_{ij}^{12}} - \frac{B_{ij}}{r_{ij}^{6}} \right) + W_{hb} \sum_{ij} E(t) \left(\frac{C_{ij}}{r_{ij}^{12}} - \frac{D_{ij}}{r_{ij}^{10}} \right) + W_{elec} \sum_{ij} \frac{q_i q_j}{\varepsilon(r_{ij}) r_{ij}} + W_{sol} \sum_{ij} (S_i V_j + S_j V_i) e^{\left(\frac{-r_{ij}^2}{2\sigma^2} \right)}$$
(10)

Onde: Na equação 9, ΔG se refere a variação da energia livre de Gibbs na formação do complexo proteína-substrato, V é o potencial elétrico, L se refere ao ligante(substrato), P se refere à proteína e ΔS_{conf} é a entropia conformacional perdida na formação do complexo. Na equação 10, W são os parâmetros de ponderação empíricos, 1º termo, chamado de (6/12), é típico para interações de Van der Waals em que A e B são parâmetros do campo de força Amber, o 2º termo, baseado num potencial (10/12), é o termo de ligação de hidrogênio direcional em que os parâmetros C e D são usados para limitar o comprimento da ligação e E(t) é o termo que restringe o ângulo para formação da ligação de hidrogênio, o 3º termo é puramente para avaliar interações eletrostáticas e o 4º termo se refere ao potencial de solvatação.

Já o *AutoDock Vina*, utiliza uma função de pontuação que leva em conta as seguintes contribuições: Interações estéricas (contendo os termos gauss₁, gauss₂ e repulsão), hidrofobicidade, ligações de hidrogénio e número de ângulos de torção de rotação livre dos

ligantes (termo N_{rot}). Os valores dos pesos que cada termo contém na função de pontuação são -0,0356; -0,00516; 0,840; -0,0351; -0,587; 0,0585 respectivamente (TROTT; OLSON, 2010).

As funções de pontuação baseadas no conhecimento derivam os potenciais de pares de elétrons de estruturas tridimensionais baseado no princípio estatístico inverso de Boltzmann, já as funções baseadas em aprendizado de máquina empregam uma variedade de algoritmos de aprendizado de máquina tais como máquina de vetor de suporte (*Support Vector Machine -* SVM), floresta aleatória (*Random Forest -* RF), rede neural artificial (*Artificial Neural Network - ANN*) e aprendizado profundo (*Deep Learning -* DL) (LI; FU; ZHANG, 2019).

Isto posto, o processo geral para realização dos cálculos de docagem molecular se resumem em escolher o alvo (proteína) e o ligante. Suas estruturas tridimensionais podem ser obtidas em serviços de bancos de dados. Em seguida realiza-se a preparação dessas estruturas, ajusta-se o estado de protonação e os conflitos estéricos da proteína, e adiciona-se a carga parcial em cada átomo tanto da proteína quanto do ligante (TORRES et al., 2019). Existem diversos serviços online que adicionam os hidrogênios ajustando o estado de protonação dos aminoácidos (WILLIAMS et al., 2017), bem como solucionam conflitos estéricos (LASKOWSKI et al., 1993) dos átomos da proteína. O *Autodock4* permite adicionar cargas parciais à proteína pelos métodos de Kollman e Gaisteger. Ao ligante só é possível adicionar cargas pelo método de Gaisteger. Por fim, realiza-se a docagem e obtém-se as conformações do ligante ranqueadas por pontuação. Com essas posições, interpretam-se os resultados obtidos (MORRIS et al., 1998; TORRES et al., 2019).

Referências

ABDULLAH, Muhammad Imran; MAHMOOD, Asif; MADNI, Murtaza; MASOOD, Sara; KASHIF, Muhammad. Synthesis, characterization, theoretical, anti-bacterial and molecular docking studies of quinoline based chalcones as a DNA gyrase inhibitor. **Bioorganic Chemistry**, *[S. l.]*, v. 54, n. 1, p. 31–37, 2014. DOI: 10.1016/j.bioorg.2014.03.006.

AÏSSA, Christophe. Mechanistic manifold and new developments of the Julia-Kocienski reaction. **European Journal of Organic Chemistry**, *[S. l.]*, n. 12, p. 1831–1844, 2009. DOI: 10.1002/ejoc.200801117.

ALIBEIKI, Fatemeh; JAFARI, Naser; KARIMI, Maryam; PEERI DOGAHEH, Hadi. Potent anti-cancer effects of less polar Curcumin analogues on gastric adenocarcinoma and esophageal squamous cell carcinoma cells. **Scientific Reports**, *[S. l.]*, v. 7, n. 1, p. 1–9, 2017. DOI: 10.1038/s41598-017-02666-4.

ANAND, Namrata; SINGH, Priyanka; SHARMA, Anindra; TIWARI, Sameer; SINGH, Vandana; SINGH, Diwakar K.; SRIVASTAVA, Kishore K.; SINGH, B. N.; TRIPATHI, Rama Pati. Synthesis and evaluation of small libraries of triazolylmethoxy chalcones, flavanones and 2-aminopyrimidines as inhibitors of mycobacterial FAS-II and PknG. **Bioorganic and Medicinal Chemistry**, *[S. l.]*, v. 20, n. 17, p. 5150–5163, 2012. DOI: 10.1016/j.bmc.2012.07.009.

AOKI, Nobuwa; MUKO, Mai; OHTA, Emi; OHTA, Shinji. C-geranylated chalcones from the stems of Angelica keiskei with superoxide-scavenging activity. **Journal of Natural Products**, *[S. l.]*, v. 71, n. 7, p. 1308–1310, 2008. DOI: 10.1021/np800187f.

ARBUZOV, B. A.; YULDASHEVA, L. K.; ANONIMOVA, I. V.; SHAGIDULLIN, R. R.; CHERNOVA, A. V.; FAZLIEZ, D. F. DIPOLE MOMENTS AND MOLECULAR OF SPECTRA OF CERTAIN DERIVATIVES OF DIBENZALACETONE. **Bulletin of the Academy of Sciences of the USSR, Division of chemical science**, *[S. l.]*, v. 18, n. 7, p. 1377–1380, 1969.

AVILA-VILLARREAL, G.; HERNÁNDEZ-ABREU, O.; HIDALGO-FIGUEROA, S.; NAVARRETE-VÁZQUEZ, G.; ESCALANTE-EROSA, F.; PENA-RODRÍGUEZ, L. M.; VILLALOBOS-MOLINA, R.; ESTRADA-SOTO, S. Antihypertensive and vasorelaxant effects of dihydrospinochalcone-Aisolated from Lonchocarpus xuul Lundell by NO production:Computational and ex vivo approaches. **Phytomedicine**, *[S. l.]*, v. 20, p. 1241–1246, 2013.

BALE, Adebayo Tajudeen et al. Chalcones and bis-chalcones: As potential α-amylase inhibitors; synthesis, in vitro screening, and molecular modelling studies. **Bioorganic Chemistry**, *[S. l.]*, v. 79, p. 179–189, 2018. DOI: 10.1016/j.bioorg.2018.05.003.

BALOUIRI, Mounyr; SADIKI, Moulay; IBNSOUDA, Saad Koraichi. Methods for in vitro evaluating antimicrobial activity: A review. **Journal of Pharmaceutical Analysis**, *[S. l.]*, 2016. DOI: 10.1016/j.jpha.2015.11.005.

BARNARD, Eric A.; DARLISON, Mark G.; SEEBURG, Peter. Molecular biology of the GABAA receptor: the receptor/channel superfamily. **Trends in Neurosciences**, *[S. l.]*, v. 10, n. 12, p. 502–509, 1987. DOI: 10.1016/0166-2236(87)90130-5.

BAUDIN, Jean Bernard; HAREAU, Georges; JULIA, Sylvestre A.; RUEL, Odile. A direct synthesis of olefins by reaction of carbonyl compounds with lithio derivatives of 2-[alkyl- or (2'-alkenyl)- or benzyl-sulfonyl]-benzothiazoles. **Tetrahedron Letters**, *[S. l.]*, v. 32, n. 9, p. 1175–1178, 1991. DOI: 10.1016/S0040-4039(00)92037-9.

BECKE, Axel D. Density-functional thermochemistry. III. The role of exact exchange. **The Journal of Chemical Physics**, *[S. l.]*, v. 98, n. 7, p. 5648–5652, 1993. DOI: 10.1063/1.464913.

BELSARE, D. P.; PAL, S. C.; KAZI, A. A.; KANKATE, R. S.; VANJARI, S. S. Evaluation of antioxidants activity of chalcones and flavonoids. **International Journal of ChemTech Research**, *[S. l.]*, v. 2, n. 2, p. 1080–1089, 2010.

BENNEH, Charles Kwaku; BINEY, Robert Peter; MANTE, Priscilla Kolibea; TANDOH, Augustine; ADONGO, Donatus Wewura; WOODE, Eric. Maerua angolensis stem bark extract reverses anxiety and related behaviours in zebrafish — Involvement of GABAergic and 5-HT systems. **Journal of Ethnopharmacology**, *[S. l.]*, v. 207, n. November 2016, p. 129–145, 2017. DOI: 10.1016/j.jep.2017.06.012.

BOBEREK, J. M.; GOH, S.; STACH, J.; GOOD, L. Filamentous temperature-sensitive mutant z (ftsz) protein as an antibacterial target. *In*: TEGOS, George; MYLONAKIS, Eleftherios (org.). Antimicrobial Drug Discovery Emerging Strategies. [s.l: s.n.]. p. 135-146.

BRAY, Freddie; FERLAY, Jacques; SOERJOMATARAM, Isabelle; SIEGEL, Rebecca L.; TORRE, Lindsey A.; JEMAL, Ahmedin. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. **CA: A Cancer Journal for Clinicians**, *[S. l.]*, v. 68, n. 6, p. 394–424, 2018. DOI: 10.3322/caac.21492.

CAI, Chao Yun et al. Biological evaluation of non-basic chalcone CYB-2 as a dual ABCG2/ABCB1 inhibitor. **Biochemical Pharmacology**, *[S. l.]*, v. 175, n. December 2019, p. 113848, 2020. DOI: 10.1016/j.bcp.2020.113848. Disponível em: https://doi.org/10.1016/j.bcp.2020.113848.

CERVO, Amado L.; BERVIAN, Pedro A.; SILVA, Roberto Da. **Metodologia Científica**. 6. ed. São Paulo: Pearson, 2007.

CHENG, Jen Hao; HUNG, Chi Feng; YANG, Shyh Chyun; WANG, Jih Pyang; WON, Shen Jeu; LIN, Chun Nan. Synthesis and cytotoxic, anti-inflammatory, and anti-oxidant activities of 2',5'-dialkoxylchalcones as cancer chemopreventive agents. **Bioorganic and Medicinal Chemistry**, *[S. l.]*, v. 16, n. 15, p. 7270–7276, 2008. DOI: 10.1016/j.bmc.2008.06.031.

CHIARADIA, Louise Domeneghini et al. Synthetic chalcones as efficient inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase PtpA. **Bioorganic and Medicinal Chemistry Letters**, *[S. l.]*, v. 18, n. 23, p. 6227–6230, 2008. DOI: 10.1016/j.bmcl.2008.09.105.

CHO, Suengmok et al. Isoliquiritigenin, a chalcone compound, is a positive allosteric modulator of GABA A receptors and shows hypnotic effects. **Biochemical and Biophysical Research Communications**, *[S. l.]*, v. 413, n. 4, p. 637–642, 2011. DOI: 10.1016/j.bbrc.2011.09.026.

CHTOUROU, Manef; ABDELHÉDI, Rami; FRIKHA, Mohamed Hédi; TRABELSI, Mahmoud. Solvent free synthesis of 1,3-diaryl-2-propenones catalyzed by commercial acidclays under ultrasound irradiation. **Ultrasonics Sonochemistry**, *[S. l.]*, v. 17, n. 1, p. 246– 249, 2010. DOI: 10.1016/j.ultsonch.2009.06.008.

CLAISEN, L.; CLAPARÈDE, A. Condensationen von Ketonen mit Aldehyden. Berichte der deutschen chemischen Gesellschaft, [S. l.], v. 14, p. 2460–2468, 1881.

CORRÊA, Rogério; PEREIRA, Márcia A. S.; BUFFON, Daniela; DOS SANTOS, Lorena;

FILHO, Valdir Cechinel; SANTOS, Adair R. S.; NUNES, Ricardo J. Antinociceptive properties of chalcones. Structure-activity relationships. **Archiv der Pharmazie**, *[S. l.]*, v. 334, n. 10, p. 332–334, 2001. DOI: 10.1002/1521-4184(200110)334:10<332::AID-ARDP332>3.0.CO;2-O.

COSTA S. S.; VIVEIROS M.; AMARAL L.; COUTO I. Multidrug efflux pumps in Staphylococcus aureus: an update. **The open microbiology journal**, *[S. l.]*, v. 7, n. 1, p. 59–71, 2013. DOI: 10.2174/1874285801307010059.

DA SILVEIRA, Nelson J. F.; PEREIRA, Felipe Siconha S.; ELIAS, Thiago C.; HENRIQUE, Tiago. Web services for molecular docking simulations. **Methods in Molecular Biology**, *[S. l.]*, v. 2053, p. 221–229, 2019. DOI: 10.1007/978-1-4939-9752-7_14.

DAINA, Antoine; MICHIELIN, Olivier; ZOETE, Vincent. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. **Scientific Reports**, *[S. l.]*, v. 7, n. March, p. 1–13, 2017. DOI: 10.1038/srep42717.

DAN, Wenjia; DAI, Jiangkun. Recent developments of chalcones as potential antibacterial agents in medicinal chemistry. **European Journal of Medicinal Chemistry**, *[S. l.]*, v. 187, p. 111980, 2020. DOI: 10.1016/j.ejmech.2019.111980.

DE CAMPOS-BUZZI, Fátima; DE CAMPOS, Jordana Pereira; TONINI, Patrícia Pozza; CORRÊA, Rogério; YUNES, Rosendo Augusto; BOECK, Paula; CECHINEL-FILHO, Valdir. Antinociceptive effects of synthetic chalcones obtained from xanthoxyline. **Archiv der Pharmazie**, *[S. l.]*, v. 339, n. 7, p. 361–365, 2006. DOI: 10.1002/ardp.200600049.

DOMADIA, Prerna; SWARUP, Sanjay; BHUNIA, Anirban; SIVARAMAN, J.; DASGUPTA, Debjani. Inhibition of bacterial cell division protein FtsZ by cinnamaldehyde. **Biochemical Pharmacology**, *[S. l.]*, v. 74, n. 6, p. 831–840, 2007. DOI: 10.1016/j.bcp.2007.06.029.

DOMÍNGUEZ, José N.; LEÓN, Caritza; RODRIGUES, Juan; DE DOMÍNGUEZ, Neira Gamboa; GUT, Jiri; ROSENTHAL, Philip J. Synthesis and evaluation of new antimalarial phenylurenyl chalcone derivatives. **Journal of Medicinal Chemistry**, *[S. l.]*, v. 48, n. 10, p. 3654–3658, 2005. DOI: 10.1021/jm0582080.

DORE, JC.; VIEL, C. Recherches en chimiotherapie antitumorale. Ix. Activite cytotoxique

sur cellules tumorales en culture de chalcones substituees et de composes apparentes. **J. Pharm. Belg.**, *[S. l.]*, v. 29, n. 4, p. 341–351, 1974.

DU, Dijun; WANG-KAN, Xuan; NEUBERGER, Arthur; VAN VEEN, Hendrik W.; POS, Klaas M.; PIDDOCK, Laura J. V.; LUISI, Ben F. Multidrug efflux pumps: structure, function and regulation. **Nature Reviews Microbiology**, *[S. l.]*, v. 16, n. 9, p. 523–539, 2018. DOI: 10.1038/s41579-018-0048-6. Disponível em: http://dx.doi.org/10.1038/s41579-018-0048-6.

DUCKI, Sylvie. The development of chalcones as promising anticancer agents. **IDrugs**, *[S. l.]*, v. 10, n. 1, p. 42–46, 2007.

EDDARIR, Said; COTELLE, Nicole; BAKKOUR, Youssef; ROLANDO, Christian. An efficient synthesis of chalcones based on the Suzuki reaction. **Tetrahedron Letters**, *[S. l.]*, v. 44, n. 28, p. 5359–5363, 2003. DOI: 10.1016/S0040-4039(03)01140-7.

ELSOHLY, H. N.; JOSHI, A. S.; NIMROD, A. C.; WALKER, L. A.; CLARK, A. M. Antifungal Chalcones from Maclura tinctoria. **Plant Med**, *[S. l.]*, v. 67, p. 87–89, 2001.

EMAYAVARAMBAN, M.; SANTHI, N.; GOPI, C.; MANIVANNAN, C.; RAGURAMAN, A. Synthesis, Characterization and Anti-diabetic activity of 1, 3, 5-triaryl-2-pyrazolines in acetic acid solution under Ultrasound Irradiation. **International Letters of Chemistry, Physics and Astronomy**, *[S. l.]*, v. 9, p. 172–185, 2013.

FERREIRA, Maria Kueirislene A. et al. Anxiolytic-like effect of chalcone N-{(4'-[(E)-3-(4-fluorophenyl)-1-(phenyl) prop-2-en-1-one]} acetamide on adult zebrafish (Danio rerio): Involvement of the GABAergic system. **Behavioural Brain Research**, *[S. l.]*, v. 374, n. December 2018, p. 3–8, 2019. DOI: 10.1016/j.bbr.2019.03.040.

FIRME, C. L. Aplicações da teoria de átomos em moléculas e da teoria do funcional da densidade em sistemas moleculares orgânicos. 2007. Tese (Doutorado em Química Orgânica) - Instituto de Química, UFRJ, Rio de Janeito, 2007.

GOMES, Marcelo N.; MURATOV, Eugene N.; PEREIRA, Maristela; PEIXOTO, Josana C.; ROSSETO, Lucimar P.; CRAVO, Pedro V. L.; ANDRADE, Carolina H.; NEVES, Bruno J. Chalcone derivatives: Promising starting points for drug design. **Molecules**, *[S. l.]*, v. 22, n. 8, 2017. DOI: 10.3390/molecules22081210.

GRIFFITHS, Peter R.; CHALMERS, John M. Handbook of vibrational spectroscopy. 1. ed.

New York: J. Sons, 2002.

HECK, K. F.; NOLLEY, J. P. Palladium-Catalyzed Vinylic Hydrogen Substitution Reactions with Aryl, Benzyl, and Styryl Halides. **Journal of Organic Chemistry**, *[S. l.]*, v. 37, n. 14, p. 2320–2322, 1972. DOI: 10.1021/jo00979a024.

HINCHLIFFE, Alan. Molecular Modelling for Beginners. 2. ed. Manchester: John Wiley and Sons, 2008.

HOLLER, Jes Gitz; SLOTVED, Hans Christian; MOLGAARD, Per; OLSEN, Carl Erik; CHRISTENSEN, Soren Brogger. Chalcone inhibitors of the NorA efflux pump in Staphylococcus aureus whole cells and enriched everted membrane vesicles. **Bioorganic and Medicinal Chemistry**, *[S. l.]*, v. 20, n. 14, p. 4514–4521, 2012. DOI: 10.1016/j.bmc.2012.05.025.

HUEY, RUTH; MORRIS, GARRETT M.; OLSON, ARTHUR J.; GOODSELL, DAVID S. A Semiempirical Free Energy Force Field with Charge-Based Desolvation. **Journal of computational chemistry**, *[S. l.]*, v. 28, n. 6, p. 1145–1152, 2007. DOI: 10.1002/jcc.

INAMULLAH, Farah; FATIMA, Itrat; KHAN, Sadia; KAZMI, Mehdi Hassan; MALIK, Abdul; TAREEN, Rasool Bakhsh; ABBAS, Tanveer. New antimicrobial flavonoids and chalcone from Colutea armata. **Archives of Pharmacal Research**, *[S. l.]*, v. 40, n. 8, p. 915–920, 2017. DOI: 10.1007/s12272-017-0901-6.

JAMAL, Huma; ANSARI, Wajid Hussain; RIZVI, Shamim Jahan. Evaluation of chalcones -A flavonoid subclass, for, their anxiolytic effects in rats using elevated plus maze and open field behaviour tests. **Fundamental and Clinical Pharmacology**, *[S. l.]*, v. 22, n. 6, p. 673– 681, 2008. DOI: 10.1111/j.1472-8206.2008.00639.x.

JOHNSON III; RUSSELL, D. NIST Computational Chemistry Comparison and Benchmark Database. **NIST Standard Reference Database Number 101**, *[S. l.]*, n. 20, 2020. DOI: 10.18434/T47C7Z.

JONES, Gareth; WILLETT, Peter; GLEN, Robert C.; LEACH, Andrew R.; TAYLOR, Robin. Development and Validation of a Genetic Algorithm for Flexible Docking. **Journal of Molecular Biology**, *[S. l.]*, v. 267, p. 727–748, 1997.

JULIA, M. ..; PARIS, J. M. Syntheses with the help of sulfones. V. General method of

synthesis of double bonds. Tetrahedron Letters, [S. l.], v. 14, n. 49, p. 4833–4836, 1973.

KAATZ, Glenn W.; MCALEESE, Fionnuala; SEO, Susan M. Multidrug resistance in
Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion
(MATE) transport protein. Antimicrobial Agents and Chemotherapy, [S. l.], v. 49, n. 5, p. 1857–1864, 2005. DOI: 10.1128/AAC.49.5.1857-1864.2005.

KAATZ, Glenn W.; MOUDGAL, Varsha V.; SEO, Susan M.; KRISTIANSEN, Jette E. Phenothiazines and thioxanthenes inhibit multidrug efflux pump activity in Staphylococcus aureus. **Antimicrobial Agents and Chemotherapy**, *[S. l.]*, v. 47, n. 2, p. 719–726, 2003. DOI: 10.1128/AAC.47.2.719-726.2003.

KAKATI, Dwipen; SARMA, Jadab C. Microwave assisted solvent free synthesis of 1,3diphenylpropenones. **Chemistry Central Journal**, *[S. l.]*, v. 5, n. 1, p. 1–5, 2011. DOI: 10.1186/1752-153X-5-8.

KIRAN, A. John; CHANDRASEKHARAN, K.; NOOJI, Satheesh Rai; SHASHIKALA, H. D.; UMESH, G.; KALLURAYA, Balakrishna. X(3) Measurements and Optical Limiting in Dibenzylideneacetone and Its Derivatives. **Chemical Physics**, *[S. l.]*, v. 324, n. 2–3, p. 699–704, 2006. DOI: 10.1016/j.chemphys.2005.12.006.

KUMAR, Atul; SHARMA, Siddharth; TRIPATHI, Vishwa Deepak; SRIVASTAVA, Suman. Synthesis of chalcones and flavanones using Julia-Kocienski olefination. **Tetrahedron**, *[S. l.]*, v. 66, n. 48, p. 9445–9449, 2010. DOI: 10.1016/j.tet.2010.09.089.

LAMUT, Andraž; PETERLIN MAŠIČ, Lucija; KIKELJ, Danijel; TOMAŠIČ, Tihomir. Efflux pump inhibitors of clinically relevant multidrug resistant bacteria. **Medicinal Research Reviews**, *[S. l.]*, v. 39, n. 6, p. 2460–2504, 2019. DOI: 10.1002/med.21591.

LASKOWSKI, R. A.; MACARTHUR, M. W.; MOSS, D. S.; THORNTON, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. **Journal of Applied Crystallography**, *[S. l.]*, v. 26, n. 2, p. 283–291, 1993. DOI: 10.1107/s0021889892009944.

LEE, Chengteh; YANG, Weitao; PARR, Robert G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. **Physical Review B**, *[S. l.]*, v. 37, n. 2, p. 785–789, 1988. DOI: 10.1103/PhysRevB.37.785.

LEMES, Susy Ricardo et al. Optical properties and antiangiogenic activity of a chalcone derivate. **Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy**, *[S. l.]*, v. 204, p. 685–695, 2018. DOI: 10.1016/j.saa.2018.06.099.

LI, Jin; FU, Ailing; ZHANG, Le. An Overview of Scoring Functions Used for Protein– Ligand Interactions in Molecular Docking. **Interdisciplinary Sciences: Computational Life Sciences**, *[S. l.]*, v. 11, n. 2, p. 320–328, 2019. DOI: 10.1007/s12539-019-00327-w.

LI, Jingfen; LI, Dong; XU, Yiming; GUO, Zhenbo; LIU, Xu; YANG, Hua; WANG, Lisheng; WU, Lichuan. Design, synthesis, biological evaluation, and molecular docking of chalcone derivatives as anti-inflammatory agents. **Bioorganic & Medicinal Chemistry Letters**, *[S. l.]*, v. 27, n. 3, p. 602–606, 2017. DOI: 10.1016/j.bmcl.2016.12.008.

LI, Xin; SHENG, Juzheng; HUANG, Guihua; MA, Ruixin; YIN, Fengxin; SONG, Di; ZHAO, Can; MA, Shutao. Design, synthesis and antibacterial activity of cinnamaldehyde derivatives as inhibitors of the bacterial cell division protein FtsZ. **European Journal of Medicinal Chemistry**, *[S. l.]*, v. 97, p. 32–41, 2015. DOI: 10.1016/j.ejmech.2015.04.048.

LIANG, Guang; SHAO, Lili; WANG, Yi; ZHAO, Chengguang; CHU, Yanhui; XIAO, Jian; ZHAO, Yu; LI, Xiaokun; YANG, Shulin. Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. **Bioorganic and Medicinal Chemistry**, *[S. l.]*, v. 17, n. 6, p. 2623–2631, 2009. DOI: 10.1016/j.bmc.2008.10.044.

LIMA, Rosa S.; PEREZ, Caridad N.; DA SILVA, Cameron C.; SANTANA, Mabio J.; QUEIROZ JÚNIOR, Luiz H. K.; BARRETO, Stefânio; DE MORAES, Manoel O.; MARTINS, Felipe T. Structure and cytotoxic activity of terpenoid-like chalcones. **Arabian Journal of Chemistry**, *[S. l.]*, v. 12, n. 8, p. 3890–3901, 2019. DOI: 10.1016/j.arabjc.2016.02.013.

LIU, Jie; ZHAI, Wei Min; YANG, Yuan Xiao; SHI, Jin Li; LIU, Qian Tong; LIU, Guo Lin; FANG, Nan; LI, Jian; GUO, Jian You. GABA and 5-HT systems are implicated in the anxiolytic-like effect of spinosin in mice. **Pharmacology Biochemistry and Behavior**, *[S. l.]*, v. 128, p. 41–49, 2015. DOI: 10.1016/j.pbb.2014.11.003.

LOTFY, Gehad; SAID, Mohamed M.; EL ASHRY, El Sayed H.; EL TAMANY, El Sayed H.; ABDEL AZIZ, Yasmine M.; SOLIMAN, Saied M.; BARAKAT, Assem. Synthesis,

structure combined with conformational analysis, biological activities and docking studies of bis benzylidene cyclohexanone derivatives. **Journal of Saudi Chemical Society**, *[S. l.]*, v. 21, n. 5, p. 619–632, 2017. DOI: 10.1016/j.jscs.2017.04.002.

MAGALHÃES, Francisco Ernani Alves et al. Adult Zebrafish (Danio rerio): An Alternative Behavioral Model of Formalin-Induced Nociception. **Zebrafish**, *[S. l.]*, v. 14, n. 5, p. 422–429, 2017. DOI: 10.1089/zeb.2017.1436.

MAHAPATRA, Debarshi Kar; BHARTI, Sanjay Kumar; ASATI, Vivek. Anti-cancer chalcones: Structural and molecular target perspectives. **European Journal of Medicinal Chemistry**, *[S. l.]*, v. 98, p. 69–114, 2015. DOI: 10.1016/j.ejmech.2015.05.004.

MALLÉA, Monique; CHEVALIER, Jacqueline; EYRAUD, Annie; PAGÈS, Jean Marie. Inhibitors of antibiotic efflux pump in resistant Enterobacter aerogenes strains. **Biochemical and Biophysical Research Communications**, *[S. l.]*, v. 293, n. 5, p. 1370–1373, 2002. DOI: 10.1016/S0006-291X(02)00404-7.

MARDER, Mariel. Flavonoids as GABAA receptor ligands: the whole story? **Journal of Experimental Pharmacology**, *[S. l.]*, v. 4, p. 9–24, 2012. DOI: 10.2147/jep.s23105.

MARTINEZ-CIFUENTES, Maximiliano; WEISS-LOPEZ, Boris; SANTOS, Leonardo; ARAYA-MATURANA, Ramiro. Heterocyclic Curcumin Derivatives of Pharmacological Interest: Recent Progress. **Current Topics in Medicinal Chemistry**, *[S. l.]*, v. 15, n. 17, p. 1663–1672, 2015. DOI: 10.2174/1568026615666150427111837.

MARTINS, Priscila Graziela Alves et al. Synthetic chalcones and sulfonamides as new classes of Yersinia enterocolitica YopH tyrosine phosphatase inhibitors. **European Journal of Medicinal Chemistry**, *[S. l.]*, v. 64, p. 35–41, 2013. DOI: 10.1016/j.ejmech.2013.04.018.

MATHEW, Bijo; PARAMBI, Della G. T. ..; SIVASANKARAPILLAI, Vishnu S. ..; UDDIN, MD. SAHAB; SURESH, Jerad; MATHEW, Githa Elizabeth; JOY, Monu; MARATHAKAM, Akash;; GUPTA, Sheeba Varghese; Perspective design of chalcones for the management of CNS disorders: a mini-review. **CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders**), *[S. l.]*, v. 18, n. 6, p. 432–445, 2019. DOI: doi.org/10.2174/1871527318666190610111246.

MAYERS, Douglas L.; SOBEL, Jack D.; OUELLETTE, Marc; KAYE, Keith S.; MARCHAIM, Dror. Antimicrobial Drug Resistance: Clinical and Epidemiological Aspects. 2. ed. Cham: Springer, 2017.

MELLO, Marcos Vinícius Palmeira De; ABRAHIM-VIEIRA, Barbara de Azevedo; DOMINGOS, Thaisa Francielle Souza; JESUS, Jessica Barbosa De; SOUSA, Ana Carolina Corrêa De; RODRIGUES, Carlos Rangel; SOUZA, Alessandra M. Teles De. A comprehensive review of chalcone derivatives as antileishmanial agents. **European Journal of Medicinal Chemistry**, *[S. l.]*, v. 150, p. 920–929, 2018. DOI: 10.1016/j.ejmech.2018.03.047.

MINISTÉRIO DA SAÚDE - INSTITUTO NACIONAL DE CÂNCER JOSÉ ALENCAR GOMES DA SILVA. **Estimativa 2020 : incidência de câncer no Brasil**. Rio de Janeiro. Disponível em: https://www.inca.gov.br/publicacoes/livros/estimativa-2020-incidencia-decancer-no-brasil.

MIRZAEI, Hassan; KEIGHOBADI, Masoud; EMAMI, Saeed. An Overview of Anticancer Chalcones with Apoptosis Inducing Activity. **Journal of Mazandaran University of Medical Sciences**, *[S. l.]*, v. 26, n. 146, p. 254–268, 2017.

MODZELEWSKA, Aneta; PETTIT, Catherine; ACHANTA, Geetha; DAVIDSON, Nancy E.; HUANG, Peng; KHAN, Saeed R. Anticancer activities of novel chalcone and bischalcone derivatives. **Bioorganic and Medicinal Chemistry**, *[S. l.]*, v. 14, n. 10, p. 3491– 3495, 2006. DOI: 10.1016/j.bmc.2006.01.003.

MOHAMAD, A. S. et al. Antinociceptive activity of a synthetic chalcone, flavokawin B on chemical and thermal models of nociception in mice. **European Journal of Pharmacology**, *[S. l.]*, v. 647, n. 1–3, p. 103–109, 2010. DOI: 10.1016/j.ejphar.2010.08.030.

MOHAMMED, Helmi; JAMALIS, Al-maqtari Joazaizulfazli. Synthesis, characterization, POM analysis and antifungal activity of novel heterocyclic chalcone derivatives containing acylated pyrazole. **Research on Chemical Intermediates**, *[S. l.]*, v. 43, n. 3, p. 1893–1907, 2017. DOI: 10.1007/s11164-016-2737-y.

MÖHLER, Hanns. The GABA system in anxiety and depression and its therapeutic potential. **Neuropharmacology**, *[S. l.]*, v. 62, n. 1, p. 42–53, 2012. DOI: 10.1016/j.neuropharm.2011.08.040.

MORGON, N. H.; CUSTODIO, R. Teoria do Funcional de Densidade. **Quimica Nova**, *[S. l.]*, v. 18, n. 1, p. 44–55, 1995.

MORRIS, G. M.; GOODSELL, D. S.; HALLIDAY, R. S.; HUEY, R.; HART, W. E.; BELEW, R. K.; OLSON, A. J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. **Journal of computational chemistry**, *[S. l.]*, v. 19, n. 14, p. 1639–1662, 1998.

MORRIS, Garrett M.; HUEY, Ruth; LINDSTROM, William; SANNER, Michel F.; BELEW, Richard K.; GOODSELL, David S.; OLSON, Arthur J. AutoDock4 and AutoDockTools4: Automated Docking with with Selective Receptor Flexibility. **Journal of Computational Chemistry**, *[S. l.]*, v. 30, n. 16, p. 2785–2791, 2010. DOI: 10.1002/jcc.21256.

MOSMANN, Tim. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. **Journal of Immunological Methods**, *[S. l.]*, v. 65, n. 1–2, p. 55–63, 1983. DOI: 10.1016/0022-1759(83)90303-4.

NI, Liming; MENG, Charles Q.; SIKORSKI, James A. Recent advances in therapeutic chalcones. **Expert Opinion on Therapeutic Patents**, *[S. l.]*, v. 14, n. 12, p. 1669–1691, 2004. DOI: 10.1517/13543776.14.12.1669.

NOHUT MAŞLAKCI, Neslihan; BIÇER, Abdullah; TURGUT CIN, Günseli; UYGUN ÖKSÜZ, Ayşegül. Electrochromic properties of some bis-chalcone derivatives-based nanofibers. **Journal of Applied Polymer Science**, *[S. l.]*, v. 135, n. 12, p. 25–30, 2018. DOI: 10.1002/app.46010.

OLIVEIRA, Mauro M. et al. Spectroscopic characterization and efflux pump modulation of a thiophene curcumin derivative. **Journal of Molecular Structure**, *[S. l.]*, v. 1215, 2020. DOI: 10.1016/j.molstruc.2020.128291.

OLSEN, Richard W. Allosteric ligands and their binding sites define γ-aminobutyric acid (GABA) type A receptor subtypes. In: Advances in Pharmacology. *[S. l.]*: Academic Press, 2015. v.73, cap. 7, p. 167-202. DOI: 10.1016/bs.apha.2014.11.005.

OLSEN, RICHARD W.; TOBIN, ALLAN J. Molecular biology of GABAA receptors. **The FASED Journal**, *[S. l.]*, v. 4, p. 1469–1480, 1990.

PAGÈS, Jean Marie; MASI, Muriel; BARBE, Jacques. Inhibitors of efflux pumps in Gramnegative bacteria. **Trends in Molecular Medicine**, *[S. l.]*, v. 11, n. 8, p. 382–389, 2005. DOI: 10.1016/j.molmed.2005.06.006. PARR, R. G.; YANG, W. Density Functional Theory of Atoms and Molecules. New York.

PATIL, Pravinkumar; KHAN, Pathan Amjad; ZANGADE, Sainath. Synthesis of 1, 3-diaryl-2-propene-1-one derivatives using tripotassium phosphate as an alternative and efficient catalyst and study its cytotoxic and antimicrobial properties. **Current Chemistry Letters**, *[S. l.]*, v. 9, n. 4, p. 183–198, 2020. DOI: 10.5267/j.ccl.2020.3.001.

PAVIA, D. L.; LAMPMAN, G. M.; KRIZ, G. S.; VYVYAN, J. R. Introdução à espectroscopia tradução da 4ª edição norte-americana. 4. ed. São Paulo: Cengage Learning, 2010.

PINZI, Luca; RASTELLI, Giulio. Molecular docking: Shifting paradigms in drug discovery. **International Journal of Molecular Sciences**, *[S. l.]*, v. 20, n. 18, p.1-23, 2019. DOI: 10.3390/ijms20184331.

RAJASHEKAR, B.; SOWMENDRAN, P.; SAI, S. Siva Sankara; RAO, G. Nageswara. Synthesis, characterization and two-photon absorption based broadband optical limiting in diarylideneacetone derivative. **Journal of Photochemistry and Photobiology A: Chemistry**, *[S. l.]*, v. 238, p. 20–23, 2012. DOI: 10.1016/j.jphotochem.2012.04.006.

RAMESH, Deepthi; JOJI, Annu; VIJAYAKUMAR, Balaji Gowrivel; SETHUMADHAVAN, Aiswarya; MANI, Maheswaran; KANNAN, Tharanikkarasu. Indole chalcones: Design, synthesis, in vitro and in silico evaluation against Mycobacterium tuberculosis. **European Journal of Medicinal Chemistry**, *[S. l.]*, v. 198, p. 112358, 2020. DOI: 10.1016/j.ejmech.2020.112358.

RAMIREZ, Fausto; DERSHOWITZ, Samuel. Phosphinemethylenes. II. Triphenylphosphineacylmethylenes. **Journal of Organic Chemistry**, *[S. l.]*, v. 22, n. 1, p. 41–45, 1957. DOI: 10.1021/jo01352a010.

RAMMOHAN, Aluru; REDDY, Julakanti Satyanarayana; SRAVYA, Gundala; RAO, Chittluri Narasimha; ZYRYANOV, Grigory V. Chalcone synthesis, properties and medicinal applications: a review. **Environmental Chemistry Letters**, *[S. l.]*, v. 18, n. 2, p. 433–458, 2020. DOI: 10.1007/s10311-019-00959-w.

RANI, Anu; ANAND, Amit; KUMAR, Kewal; KUMAR, Vipan. Recent developments in biological aspects of chalcones: the odyssey continues. **Expert Opinion on Drug Discovery**, *[S. l.]*, v. 14, n. 3, p. 249–288, 2019. DOI: 10.1080/17460441.2019.1573812.

RAREY, Matthias; KRAMER, Bernd; LENGAUER, Thomas; KLEBE, Gerhard. A fast flexible docking method using an incremental construction algorithm. **Journal of Molecular Biology**, *[S. l.]*, v. 261, n. 3, p. 470–489, 1996. DOI: 10.1006/jmbi.1996.0477.

RATEB, Nora M.; ZOHDI, Hussein F. Atom-efficient, solvent-free, green synthesis of chalcones by grinding. **Synthetic Communications**, *[S. l.]*, v. 39, n. 15, p. 2789–2794, 2009. DOI: 10.1080/00397910802664244.

REDDY, N. Sunil Kumar; BADAM, Rajashekar; SATTIBABU, Romala; MOLLI,
Muralikrishna; MUTHUKUMAR, V. Sai; SAI, S. Siva Sankara; RAO, G. Nageswara.
Synthesis, characterization and nonlinear optical properties of symmetrically substituted
dibenzylideneacetone derivatives. Chemical Physics Letters, [S. l.], v. 616–617, p. 142–147,
2014. DOI: 10.1016/j.cplett.2014.10.043.

REZENDE-JÚNIOR, Luís Mário et al. Chalcones Isolated from Arrabidaea brachypoda Flowers as Inhibitors of NorA and MepA Multidrug Efflux Pumps of Staphylococcus aureus. **Antibiotics**, *[S. l.]*, v. 9, p. 351, 2020. DOI: doi:10.3390/antibiotics9060351.

ROCHA GONSALVES, António M. d'A.; PINHO E MELO, Teresa M. V. D. Espectroscopia de Ressonância Magnética e Nuclear. Coimbra.

SABATINI, Stefano; KAATZ, Glenn W.; ROSSOLINI, Gian Maria; BRANDINI, David; FRAVOLINI, Arnaldo. From phenothiazine to 3-phenyl-1,4-benzothiazine derivatives as inhibitors of the Staphylococcus aureus NorA multidrug efflux pump. **Journal of Medicinal Chemistry**, *[S. l.]*, v. 51, n. 14, p. 4321–4330, 2008. DOI: 10.1021/jm701623q.

SALEH, Taiseer Abdul-Kader. Synthesis and Characterization of Chalcone Derivatives from Furfural. **Chemistry of Advanced Materials**, *[S. l.]*, v. 2, n. 4, p. 44–52, 2017. Disponível em: http://issrpublishing.com/cam/.

SALEHI, Bahare et al. Pharmacological Properties of Chalcones: A Review of Preclinical Including Molecular Mechanisms and Clinical Evidence. **Frontiers in Pharmacology**, *[S. l.]*, v. 11, n. January, 2021. DOI: 10.3389/fphar.2020.592654.

SANTOS, Antonio Raimundo. **Metodologia Científica: a construção do conhecimento**. 7. ed. Rio de Janeiro: Lamparina, 2015.

SANTOS, Francisco et al. Nonlinear optical study in a set of dibenzylideneacetone
derivatives with potential for optical frequency conversion. **Photonics**, *[S. l.]*, v. 7, n. 1, p. 1-13, 2020. DOI: 10.3390/photonics7010008.

SCHINDLER, Bryan D.; JACINTO, Pauline; KAATZ, Glenn W. Inhibition of drug efflux pumps in Staphylococcus aureus: current status of potentiating existing antibiotics. **Future Microbiol.**, *[S. l.]*, v. 8, n. 4, p. 491–507, 2013. DOI: 10.11250/chemotherapy1953.16.843.

SCHMIDT, J. G. Ueber die Einwirkung von Aceton auf Furfurol und auf Bittermandelöl bei Gegenwart von Alkalilauge. **Berichte der deutschen chemischen Gesellschaft**, *[S. l.]*, v. 14, n. 1, p. 1459–1461, 1881. DOI: 10.1002/cber.188101401306.

SHARMA, Atin; GUPTA, Vivek Kumar; PATHANIA, Ranjana. Efflux pump inhibitors for bacterial pathogens: From bench to bedside. **Indian Journal of Medical Research**, *[S. l.]*, v. 149, n. 2, p. 129, 2019. DOI: 10.4103/ijmr.IJMR_2079_17.

SHARMA, V.; KUMAR, V.; KUMAR, P. Heterocyclic Chalcone Analogues as Potential Anticancer Agents. **Anti-Cancer Agents in Medicinal Chemistry**, *[S. l.]*, v. 13, n. 3, p. 422–432, 2013. DOI: 10.2174/1871520611313030006.

SHETTIGAR, Seetharam; CHANDRASEKHARAN, K.; UMESH, G.; SAROJINI, B. K.; NARAYANA, B. Studies on nonlinear optical parameters of bis-chalcone derivatives doped polymer. **Polymer**, *[S. l.]*, v. 47, n. 10, p. 3565–3567, 2006. DOI: 10.1016/j.polymer.2006.03.062.

SIDDIQUI, Anees A.; RAHMAN, Md. Azizur; SHAHARYAR, Md.; MISHRA, Ravinesh. Synthesis And Anticonvulsant Activity Of Some Substituted 3 , 5-Diphenyl-2- Pyrazoline-1-Carboxamide Derivatives. **Chemical Sciences Journal**, *[S. l.]*, v. CSJ-8, p. 1–10, 2010.

SILVA, P. T. et al. Synthesis, spectroscopic characterization and antibacterial evaluation by chalcones derived of acetophenone isolated from Croton anisodontus Müll. Arg. **Journal of Molecular Structure**, *[S. l.]*, v. 1226, p. 129403, 2021. DOI: 10.1016/j.molstruc.2020.129403.

SINGH, Manjinder; SHARMA, Pratibha; JOSHI, Priya; SAINI, Kashish; SHARMA, Ameya; PURI, Vivek; CHANDER, Janita; SINGH, Thakur Gurjeet; ARORA, Sandeep. Review article chalcones: A privileged scaffold with diverse biological activities. **Plant Archives**, *[S. l.]*, v. 20, p. 3812–3819, 2020.

SINGH, Parvesh; ANAND, Amit; KUMAR, Vipan. Recent developments in biological activities of chalcones: A mini review. European Journal of Medicinal Chemistry, [S. l.], v. 85, p. 758–777, 2014. DOI: 10.1016/j.ejmech.2014.08.033.

SMITH, Ewen; DENT, Geoffrey. Modern Raman Spectrocopy: A Practical Approach. 1. ed. West Sussex: John Wiley & Sons, 2005.

STEPHENS, P. J.; DEVLIN, F. J.; CHABALOWSKI, C. F.; FRISCH, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. **The Journal of Physical Chemistry**, *[S. l.]*, v. 98, n. 45, p. 11623– 11627, 1994. DOI: 10.1021/j100096a001.

TACCONELLI, Evelina; PEZZANI, Maria Diletta. **Public health burden of antimicrobial resistance in EuropeThe Lancet Infectious Diseases**Lancet Publishing Group, , 2019. DOI: 10.1016/S1473-3099(18)30648-0.

THOMSEN, René; CHRISTENSEN, Mikael H. MolDock: A New Technique for High-Accuracy Molecular Docking Rene⁷. **Journal of Medicinal Chemistry**, *[S. l.]*, v. 49, n. 11, p. 3315–3321, 2006. DOI: 10.1021/jm051197e.

TORRES, Pedro H. M.; SODERO, Ana C. R.; JOFILY, Paula; SILVA-JR, Floriano P. Key topics in molecular docking for drug design. **International Journal of Molecular Sciences**, *[S. l.]*, v. 20, n. 18, p. 1–29, 2019. DOI: 10.3390/ijms20184574.

TRIPATHI, Ashutosh; BANKAITIS, Vytas A. Molecular Docking: From Lock and Key to Combination Lock. **Journal of Molecular Medicine and Clinical Applications**, *[S. l.]*, v. 2, n. 1, p. 1–19, 2018. DOI: 10.16966/2575-0305.106.

TRIPATHY, Swayansiddha; SAHU, Susanta Kumar. FtsZ inhibitors as a new genera of antibacterial agents. **Bioorganic Chemistry**, *[S. l.]*, v. 91, n. December 2018, p. 103169, 2019. DOI: 10.1016/j.bioorg.2019.103169.

TROTT, Oleg; OLSON, Arthur J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. **Journal of Computational Chemistry**, *[S. l.]*, v. 31, n. 2, p. 455–461, 2010. DOI: 10.1002/jcc.21334.

UMAA, K.; KAVITHAMANI, A.; MAIDA ENGELS, S. E.; GEETHA, G. Quantitative structure activity studies on the anti-mycobacterial potentials of certain chalcone derivatives.

International Journal of Research in Organic Chemistry, [S. l.], v. 3, n. 2, p. 6–10, 2013.

UŠJAK, Dušan; IVKOVI, Branka; BOŽIĆ, Dragana D.; BOŠKOVIĆ, Lidija; MILENKOVI, Marina. Antimicrobial activity of novel chalcones and modulation of virulence factors in hospital strains of Acinetobacter baumannii and Pseudomonas aeruginosa. **Microbial Pathogenesis**, *[S. l.]*, v. 131, p. 186–196, 2019. DOI: https://doi.org/10.1016/j.micpath.2019.04.015.

VERMA, Shipra; SRIVASTAVA, Alok Kumar; PANDEY, O. P. A Review on Chalcones Synthesis and their Biological Activity. **PharmaTutor**, *[S. l.]*, v. 6, n. 2, p. 22–39, 2018. DOI: http://dx.doi.org/10.29161/PT.v6.i2.2018.22.

VIANA, G. S. B.; BANDEIRA, M. A. M.; MATOS, F. J. A. Analgesic and antiinflammatory effects of chalcones isolated from Myracrodruon urundeuva Allemão. **Phytomedicine**, *[S. l.]*, v. 10, n. 2–3, p. 189–195, 2003. DOI: 10.1078/094471103321659924.

WANG, Weixing et al. Antidepressant-like effects of liquiritin and isoliquiritin from Glycyrrhiza uralensis in the forced swimming test and tail suspension test in mice. **Progress in Neuro-Psychopharmacology and Biological Psychiatry**, *[S. l.]*, v. 32, n. 5, p. 1179–1184, 2008. DOI: 10.1016/j.pnpbp.2007.12.021.

WANG, Yi; MA, Shutao. Recent advances in inhibitors of bacterial fatty acid synthesis type II (FASII) system enzymes as potential antibacterial agents. **ChemMedChem**, *[S. l.]*, v. 8, n. 10, p. 1589–1608, 2013. DOI: 10.1002/cmdc.201300209.

WIKLER, Matthew A. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. **CLSI (NCCLS)**, *[S. l.]*, v. 26, p. M7-A7, 2006.

WILLIAMS, Christopher J. et al. MolProbity: More and better reference data for improved all-atom structure validation. **Protein Science**, *[S. l.]*, v. 27, p. 293–315, 2017. DOI: 10.1002/pro.3330.

WIMMER, Erick. Density Functional Theory for Solids, surfaces, and molecules: From Energy Bands to Molecular Bonds. *In*: LABANOWSKI, Jan K.; ANDZELM, Jan W. (org.). **Density Functional Methods in Chemistry**. 1. ed. New York: Springer-Verlag New York, 2012. p. 7–32.

WINTER, Evelyn; CHIARADIA-DELATORRE, Louise Domeneghini; GAUTHIER,

Charlotte; YUNES, Rosendo Augusto; NUNES, Ricardo Jose; CRECZYNSKI-PASA, Beatriz; PIETRO, Attilio Di. Symmetric Bis-chalcones as a New Type of Breast Cancer Resistance Protein Inhibitors with a Mechanism Di ff erent from That of Chromones. **Journal of Medicinal Chemistry**, *[S. l.]*, v. 57, p. 2930–2941, 2014.

WU, Gaochan et al. Overview of Recent Strategic Advances in Medicinal Chemistry. **Journal of Medicinal Chemistry**, *[S. l.]*, v. 62, n. 21, p. 9375–9414, 2019. DOI: 10.1021/acs.jmedchem.9b00359.

WU, Hsing Ju; WANG, Andrew H. J.; JENNINGS, Michael P. Discovery of virulence factors of pathogenic bacteria. **Current Opinion in Chemical Biology**, *[S. l.]*, v. 12, n. 1, p. 93–101, 2008. DOI: 10.1016/j.cbpa.2008.01.023.

XAVIER, Jayze da Cunha et al. Structural characterization, electronic properties, and anxiolytic-like effect in adult zebrafish (Danio rerio) of cinnamaldehyde chalcone. **Journal of Molecular Structure**, *[S. l.]*, v. 1222, 2020. DOI: 10.1016/j.molstruc.2020.128954.

XU, Caiding; CHEN, Guoying; HUANG, Xian. Chalcones by the wittig reaction of a stable ylide with aldehydes under microwave irradiation. **Organic Preparations and Procedures International**, *[S. l.]*, v. 27, n. 5, p. 559–561, 1995. DOI: 10.1080/00304949509458500.

YADAV, Lal Dhar Singh. **Organic Spectroscopy**. 1. ed. Allahabad: Springer-Science+Business Media, 2013.

YADAV, Neesha; DIXIT, Sandeep K.; BHATTACHARYA, Amit; MISHRA, Lokesh C.; SHARMA, Manish; AWASTHI, Satish K.; BHASIN, Virendra K. Antimalarial Activity of Newly Synthesized Chalcone Derivatives In Vitro. **Chemical Biology and Drug Design**, *[S. l.]*, v. 80, n. 1, p. 340–347, 2012. DOI: 10.1111/j.1747-0285.2012.01383.x.

ZÁRATE, Sandra G.; MORALES, Paula; SWIDEREK, Katarzyna; BOLANOS-GARCIA, Victor M.; BASTIDA, Agatha. A molecular modeling approach to identify novel inhibitors of the major facilitator superfamily of efflux pump transporters. **Antibiotics**, *[S. l.]*, v. 8, n. 1, 2019. DOI: 10.3390/antibiotics8010025.

ZHANG, Bing; TENG, Zihao; LI, Xianhe; LU, Gejin; DENG, Xuming; NIU, Xiaodi; WANG, Jianfeng. Chalcone attenuates Staphylococcus aureus Virulence by Targeting Sortase A and Alpha-Hemolysin. **Frontiers in Microbiology**, *[S. l.]*, v. 8, p. 1–12, 2017. DOI: 10.3389/fmicb.2017.01715.

ZHANG, Mingming et al. Pharmacophore Modeling, Synthesis, and Antibacterial Evaluation of Chalcones and Derivatives. **ACS Omega**, *[S. l.]*, v. 3, n. 12, p. 18343–18360, 2018. DOI: 10.1021/acsomega.8b03174.

ZHUANG, Chunlin; ZHANG, Wen; SHENG, Chunquan; ZHANG, Wannian; XING, Chengguo; MIAO, Zhenyuan. Chalcone: A Privileged Structure in Medicinal Chemistry. **Chemical Reviews**, *[S. l.]*, v. 117, n. 12, p. 7762–7810, 2017. DOI: 10.1021/acs.chemrev.7b00020.

CAPÍTULO 2

Spectroscopic Characterization and Efflux Pump Modulation of a Thiophene Curcumin Derivative

Mauro M. Oliveira^{a*}, Helcio S. Santos^{a,b}, Henrique D.M Coutinho^a, Paulo N. Bandeira^b, Priscila T. da Silva^a, Thiago S. Freitas^a, Janaina E. Rocha^a, Jayze C. Xavier^a, Fabia F. Campina^a, Cristina R.S. Barbosa^a, José B. Araújo Neto^a, Raimundo L.S. Pereira^a, Maria M.C. Silva^a, Débora F. Muniz^a, Alexandre M.R. Teixeira^{a,c}, Vanessa M. Frota^b, Tigressa H. S. Rodrigues^b, Ana M. Amado^d, Maria P.M. Marques^{d,e}, Luis A. E. Batista de Carvalho^d, and Carlos E.S. Nogueira^{a,c,d}

^aDepartment of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil.

- ^bScience and Technology Centre Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil.
- ^cDepartment of physics, Regional University of Cariri, Crato, CE, Brazil.
- ^dUniversidade de Coimbra, Unidade de I&D Quimica-Física Molecular (QFM-UC), Department of Chemistry, 3004-535 Coimbra, Portugal.
- ^eUniversidade de Coimbra, Department of Life Sciences, 3000-456 Coimbra, Portugal.

E-mail addresses: mauropandi@gmail.com

^{*}Corresponding author. Department of Biological Chemistry, Regional University of Cariri, Campus Pimenta II, CEP: 63.100-000, Crato, CE, Brazil.

Abstract

Curcumin, along with its derivatives, form a large class of natural and synthetic compounds with notable biological activity. However, their highly reactive β -diketone moiety renders this type of compounds unstable at pH above 6.5. The substitution of this group for a mono-carbonyl solves this problem, while improving antibacterial and antiinflammatory activities. A thiophene curcuminoid, (1*E*,4*E*)-1,5-Di(thiophen-2-yl)penta-1,4-dien-3-one (DB thiophene), has been synthesized and its molecular and spectroscopic characterization is reported, as well as a complete vibrational assignment. An efflux pump inhibition assay determined that DB thiophene exhibits a remarkable NorA and MepA efflux pump inhibition activity. Molecular docking studies were carried out in order to understand this inhibition mechanism.

Keywords: Curcumin; Chalcone; Efflux pump; DFT; Spectroscopy; Docking.

1. Introduction

Curcumin is a polyphenol (Scheme 1) and an active principle of the *Curcuma longa* herb, also known as turmeric. Its derivatives, called curcuminoids, form a large class of natural and synthetic compounds with notable biological activity [1]. Curcumin interacts with numerous targets, such as transcription and growth factors and their receptors, as well as genes that regulate cell proliferation and apoptosis [2]. It has thus been widely used as a chemopreventive agent [2] and it is a prime candidate for cancer treatment. In fact, it can suppress the tumorigenic activity of a variety of carcinogens in the colon, duodenum, oesophagus, stomach, breast, and prostate. Curcumin and its derivatives are also known to suppress the growth of bacteria of several genera, such as Streptococcus, Staphylococcus, Lactobacillus and Helicobacter[3]. Additionally, it exhibits antiviral activity, including anti-HIV through inhibition of the HIV-1 integrase, an enzyme needed for viral replication[4].

The potential of curcumin is only hampered by its poor bioavailability and pharmacokinetic profile, as its highly reactive diketone moiety makes it unstable *in vitro* at pH above 6.5 [5]. Several studies have focused on finding synthetic derivatives with improved pharmacokinetic profiles [6,7] by substitution of the β -diketone moiety for a mono-carbonyl one. It has been shown that this substitution not only improves stability, but also leads to a better antibacterial and anti-inflammatory activities [8,9]. Likewise, modifications of the aromatic rings substitution also seems to improve the biological activity of curcumin derivatives [10].

The use of new substances in the fight against bacterial infections is often accompanied by increased resistance of these organisms. There are several mechanisms of resistance to antibiotics, one of them being known as efflux pump. This active efflux is able to extrude different compounds from the cell and is therefore seen as a key element in antimicrobial resistance. Currently, more than ten multidrug efflux pump types have been identified for *S. aureus* [11], namely NorA and MepA.

NorA is a fluoroquinolone-resistant efflux pump that expels a set of different antibiotics and other substances, such as norfloxacin, ciprofloxacin, ethidium bromide and quaternary ammonium compounds [12–14]. MepA belongs to the multidrug and toxin extrusion (MATE) efflux pump family. First described by Kaatz *et al.*[15], it is also found in *S. aureus* mutant strains. Inhibition of the efflux pumps can be achieved by reducing the pump gene expression, interrupting pump assembly, reducing substrate

binding by competitive or non-competitive means and disrupting the pump's required energy source. Compounds that are capable of performing such inhibition are called efflux pump inhibitors (EPI) [16].

Since chalcone derivatives with an heterocyclic thiophene ring have an increased antibacterial activity [17], a mono-carbonyl curcumin derivative with thiophene instead the usual aromatic rings was synthesised - the (1E,4E)-1,5-Di(thiophen-2-yl)penta-1,4-dien-3-one, henceforth denominated DB thiophene (Scheme 1). This curcuminoid was fully characterized by NMR, Raman and IR spectroscopies, with a complete assignment of bands based on frequency calculations using the DFT approach. In order to test the ability of DB thiophene as an EPI, inhibition tests focused on *S. aureus* strains were performed. The inhibition mechanism of the NorA efflux pump was then studied by means of molecular docking using a NorA protein homolog model.

Scheme 1. DB thiophene structure and atom numbering along with Curcumin structure.

2. Materials and Methods

2.1 Materials

Potassium hydroxide was purchased from Dinâmica Química Contemporânea Ltd. (Indaiatuba, Brazil). Ethanol and acetone were obtained from Vetec Química Fina Ltd (Duque de Caxias, Brazil). Chlorpromazine (CPZ), ciprofloxacin, norfloxacin, carbonyl cyanide m-chlorophenylhydrazone (CCCP), thiophene-2-carbaldehyde and ethidium bromide (EtBr) were acquired from Sigma Aldrich Brasil Ltd. (São Paulo, Brazil). Brain heart infusion (BHI) was purchased from KASVI company (São José do Pinhais, Brazil).

2.2 Synthesis

The (1E,4E)-1,5-Di(thiophen-2-yl)penta-1,4-dien-3-one was synthesised by the Claisen–Schmidt condensation method [18,19], with thiophene-2-carbaldehyde instead of benzaldehyde. In an Erlenmeyer flask containing 50 mL of KOH 10% (m/v) and 40

mL of ethanol, 7 mL of thiophene-2-carbaldehyde:acetone (5:2) was slowly added, under agitation, and the temperature was kept at 0 °C. After 30 minutes, the mixture was filtered: a precipitate was obtained and washed with small portions of distilled water. The compound was redissolved in hot ethanol, filtered and allowed to cool in an ice bath. The formed crystals were washed with cold ethanol and dried at room temperature. Scheme 2 shows the DB thiophene synthesis reaction.

(1H-NMR (CDCl3, 500 MHz): δ =7.48 (2H, d, J = 5.1 Hz, H21, H25), 7.15 (2H, m, H22, H26), 7.40 (2H,d, J = 3.6 Hz, H23,H24), 6.89 (2H, d, J = 15.6 Hz, H17, H18), 7.92 (2H, d, J = 15.6 Hz, H19, H20) 13C-NMR (CDCl3, 125 MHz): δ =140.3 (CH, C7, C8), 128.4 (CH, C10, C15), 128.8 (C11, C16), 135.6 (CH, C12 C14), 124.4 (CH, C3, C4), 131.8 (CH, C5, C6), 187.7 (C, C1)); EIMS m/z (M+. 246), calcd for: C13H10OS2/246.

Scheme 2. DB thiophene synthesis reaction.

2.3 Vibrational Spectroscopy

The Raman spectrum was recorded using compacted powder in the sample holder of a Bruker RAM II FT-Raman module, equipped with a liquid nitrogen cooled highsensitivity Ge detector, and coupled to a Bruker Optics VERTEX 70v FTIR spectrometer. The 1064 nm line of a Nd:YAG laser was used as the excitation radiation, with a nominal laser power of 150 mW. The spectrum was the sum of 60 scans, at a typical resolution of ca. 4 cm⁻¹.

The FTIR-ATR spectrum was measured at room temperature using a spectrometer Bruker Vertex 70v equipped with a RT-DLaTGS (Deuterated Lanthanum α -Alanine doped TriGlycine Sulphate) detector and a Wide Range MIR-FIR. The spectra were recorded in the region 130 to 4000 cm⁻¹ with a resolution of 2 cm⁻¹ and accumulating 32 scans *per* spectrum. A Blackman–Harris three-term apodization function and the Mertz search phase correction algorithm were used.

2.4 NMR and GC-MS

The chemical reagents were from Sigma-Aldrich. 1H and 13C NMR spectra were obtained using a Bruker Spectrometer, model Avance DPX - 300 and model Avance DRX-500 operating at a frequency of 300 MHz and 500 MHz for hydrogen, 75 MHz and 125 MHz for carbon respectively. The spectra were measured in CDCl₃ solvents at 27°C and chemical shifts are reported as δ values in parts per million (ppm) relative to tetramethylsilane (δ 0.00) as the internal standard. The mass spectra were obtained with a Shimadzu QP201 GC-MS (Gas Chromatography coupled to Mass Spectrometry) using RTX-5MS capillary column (30.0m x 0.25mm x 0.30mm) for compounds within the literature record.

2.5 Computational Details

Density Functional Theory (DFT) calculations [20] were performed using the Gaussian 09 program [21]. Initial coordinates were generated according to the NMR results. The B3LYP exchange-correlation functional [22] was applied, combined with the 6-31G* basis set. All geometries were fully optimised within the Berny algorithm, using redundant internal coordinates and considering the Gaussian default convergence criteria. Vibrational wavenumber calculations were carried out for the optimised geometries, at the same theory level, to verify convergence to a real minimum within the potential energy surface (no negative eigenvalues) and to assist in the vibrational mode description.

For an accurate comparison between the calculated and experimental vibrational wavenumbers, the former were corrected for anharmonicity and incomplete electron correlation treatment, using the scaling factors of 0.960 [23] and 0.942 for predicted values below and above 2000 cm⁻¹, respectively. Vibrational modes were analysed, in terms of their Potential Energy Distribution (PED), using the VEDA [24] program with default optimisation options.

2.6 Evaluation of Efflux Pump Inhibition by MIC Reduction

The evaluation of the efflux pump inhibition was performed according to Tintino *et al.*[12]. The two strains of *S. aureus* used were: SA-1199B, which overexpresses the *norA* gene encoding the NorA efflux protein and the multi-drug resistant (MDR) mutant strain SA-K2068 which presents the MepA efflux pump. The strains were maintained on blood agar base slants and, prior to use, the cells were grown overnight at 37 °C in Heart Infusion Agar slants.

Chlorpromazine (CPZ), carbonyl cyanide m-chlorophenylhydrazone (CCCP) and ethidium bromide (EtBr) were used for this essay. Norfloxacin and Ciprofloxacin were the antibiotics used for NorA and MepA efflux inhibition respectively. The antibiotics and DB thiophene were dissolved in dimethyl sulfoxide aqueous solution (5.1%, v/v). The CPZ and EtBr were dissolved in sterile water and CCCP in methanol/water (1:1, v/v). All the compounds were stored at -20 °C, at a final concentration of 4162.60 µM for DB thiophene, 5004.50 µM for CCCP, 3211.44 µM for CPZ, 2597.00 µM for EtBr, 3206.71 µM for norfloxacin and 3090.48 µM for ciprofloxacin.

The Minimal Inhibitory Concentration (MIC) is defined as the lowest concentration in which no growth can be observed [25]. The MIC's of CPZ, CCCP, EtBr and DB thiophene were obtained in a microdilution assay using 150 μ L of each strain suspended in saline solution, corresponding to a final concentration of 10⁵ colony-forming units/mL, followed by addition of 1350 μ L of brain heart infusion (BHI) broth. Aliquots of 100 μ L were transferred to a 96-well multiplate with two-fold serial dilutions by adding 100 μ L of each compound solutions with final concentrations ranging from 2.03 to 2081.00 μ M for DB thiophene, 2.44 to 2502.25 μ M for CCCP, 1.57 to 1605.72 μ M for CPZ and 1.27 to 1298.50 μ M for EtBr. The trays were incubated at 37 °C for 24 h and bacterial growth was revealed by staining with resazurin.

In order to evaluate the potential inhibition of the efflux pump by DB thiophene, a comparative study was made assessing its ability to decrease the MIC of antibiotics and EtBr (substrate for MDR pumps including NorA [11,13,26,27] and MepA [15,28]), by comparing with CPZ and CCCP which are standard EPI's[29–32]. Eppendorf's were prepared with the EPI's and DB thiophene at a sub-inhibitory concentration (MIC/8), which corresponds to 520.32 μ M for DB thiophene, 625.56 μ M for CCCP and 401.43 μ M for CPZ. Then 100 μ L of the Eppendorf's content were transferred to a 96-well microtiter tray with two-fold serial dilution by adding 100 μ L of antibiotics and EtBr with a final concentration ranging from 1.27 to 1298.50 μ M for EtBr, 1.56 to 1603.36 μ M for norfloxacin and 1.50 to 1545.24 μ M for ciprofloxacin. The trays were incubated for 24 h at 37 °C and bacterial growth was revealed by staining with resazurin.

2.7 Statistical Analysis of the Microbiological Results

Antibacterial assays were performed in triplicate and results were expressed as an average of the replicates. The results of the tests are expressed as the geometric mean.

Statistical hypothesis analysis was applied using a Two-Way ANOVA followed by the Bonferroni post hoc test (using the GraphPad Prism 5.0 [33] software).

2.8 Docking

The NorA sequence of *S. aureus* 1199 strain (Entry Q03325) was retrieved from the Universal Protein Resource database (Uniprot). The web-based SWISS-MODEL [34] service was used to build a homology model of NorA. The HHblits-based automated mode was used, resulting in 50 different templates, the best one being based on the structure of the *E. coli* YajR transporter (PDB-ID: 3wdo).

The grid box for the docking procedure was defined as a 80Åx80Åx80Å box around the geometrical center of the NorA model. Partial Gasteiger charges were added to ligand atoms while non-polar hydrogen atoms were mixed and rotational bonds determined. Docking studies were carried out using the Lamarckian genetic algorithm in Autodock 4.0 [35]. All other parameters were kept at their default values. The ten best results were chosen by least binding energy.

3. Results and Discussion

3.1 Structural and Conformational Analysis

Figures 1a and 1b display the ¹H NMR and ¹³C NMR spectra of DB thiophene, respectively. The NMR profile (Figure 1a) shows two doublets, one at 6.89 ppm, assigned to H17 and H18 (J=15.6 Hz), and another at 7.92 ppm, due to H19 and H20 (J=15.6 Hz). Their coupling constants confirm the stereochemistry E of the double bond. The signals at 7.48 (d, J=5.1 Hz), 7.40 (d, J=3.6 Hz) and 7.15 ppm (m) are ascribed to the hydrogens of the thiophene ring. In the ¹³C spectra the signal from the unsaturated carbonyl is at 187.7 ppm, while the ketone peak is seen at 203.8 ppm. However, the presence of unsaturation causes a shift of the latter to high field. The charge delocalisation is either caused by the aromatic ring (thiophene) or by the double bond, rendering the carbonylic carbon less electron deficient. The olefinic carbons C3 and C4 are observed at 124.4 ppm, while C5 and C6 appear at 131.8 ppm. The carbon atoms belonging to the thiophene rings are at 140.3, 135.6, 128.8 and 128.4 ppm. The chromatogram (Figure S1) confirms the presence of only one compound, thereby indicating the analytical purity of the compound. ESIMS and a proposed fragmentation scheme are provided as supplementary material as Figure S2 and Scheme S1, respectively.

Figure 1. (a) ¹ H-NMR Spectrum of DB thiophene (b) ¹³ C-NMR Spectrum of DB thiophene.

Rotations around the single bonds of the enone groups lead to three possible conformational isomers, namely: *cis-cis, cis-trans* and *trans-trans* isomers, henceforth denominated C0, C1 and C2, respectively (Figure 2). DFT calculations performed on the isolated molecule show that the *trans-trans* conformation, *i.e.* the C2 conformer, is the preferred geometry (at least *in vacuum*). The calculated SCF (self-consistent field method) energies for the C0 and C1 isomers are 10.0 and 5.0 kJ mol⁻¹ higher, respectively. This is consistent with the crystal structure reported by Murugavel *et al.* [36], in which the asymmetric unit of the compound was found to be in *trans-trans* conformation.

Figure 2. Representation of the three conformers of DB thiophene.

3.2 Vibrational Analysis

The DB thiophene molecule contains 26 atoms, yielding 72 vibrational modes. The Raman and IR spectra of the compound, as well as the calculated spectra for the considered conformers are shown in Figures 3a and 3b. Comparison of spectra for wavenumbers higher than 2000 cm⁻¹ are given in Figures S3 and S4 (Supplementary information).

The calculated Raman profile of C1 is the one which matches more closely the experimental data, although the three conformers of the compound exhibit almost the same modes at roughly the same frequencies, within 10 cm⁻¹ of each other, which hardly affects the overall assignment. These differences will be discussed below. A conformation consistent with C1 model, shown by calculated Raman profile, is

corroborated by the fact that the experimental dipole moment measured previously[37] (3.19D) is closer to the theorical calculated C1 value (3.11D) than C0 (4.15D) and C2 (1.98D).

Table 1 comprises the Raman and IR data for DB thiophene, as well as the corresponding assignments. The calculated vibrational wavenumbers and Potential Energy Distribution (PED) analysis, for all three conformers of the compound, are comprised in Tables S1, S2 and S3 (Supplementary information).

ωir	WRaman	ωCalc	Assignment	
3088	3088	3081	v(CH) _{ring}	
3071	3074	3079	v(CH) _{ring}	
3044		3047	v(CH) _{ring}	
3013	3012	3034	v(CH) _{ring}	
	2990	2900	v(CH) _{enone}	
1662	1658	1673	$v(OC)_{enone} + v(CC)_{enone}$	
1602	1604	1599	v(CC) _{enone}	
1562	1567	1573	$v(OC)_{enone} + v(CC)_{enone}$	
1512	1512	1517	$v(CC)_{ring} + \delta(HCC)_{ring}$	
	1425	1426	$\nu(CC)_{ring} + \delta(HCC)_{ring}$	
1419	1420	1417	$\nu(CC)_{ring} + \delta(HCC)_{ring}$	
1376	1376	1355	$\nu(CC)_{ring} + \delta(HCS)_{ring} + \delta(HCC)_{ring}$	
1359	1359	1351	$\nu(CC)_{ring} + \delta(HCS)_{ring}$	
1319		1307	$\nu(CC)_{enone} + \delta(HCC)_{enone}$	
1307	1309	1299	$\nu(CC)_{enone} + \delta(HCC)_{enone}$	
1270	1271	1258	$\delta(HCC)_{enone} + \delta(HCC)_{ring}$	
1224	1225	1232	$\delta(HCS)_{ring} + \delta(HCC)_{ring}$	
1199	1199	1203	$\nu(CC)_{enone} + \delta(CCC)_{ring}$	
1169		1185	$\nu(CC)_{ring} + \delta(HCC)_{enone} + \delta(HCC)_{ring}$	
1106	1095	1115	$\nu(CC)_{ring} + \nu(CC)_{enone} + \delta(CCC)_{ring}$	
1095	1088	1079	$\nu(CC)_{enone} + \delta(HCS)_{ring} + \delta(HCC)_{ring}$	
1045	1047	1034	$\nu(CC)_{ring} + \delta(HCC)_{ring}$	
1038	1041	1025	$\nu(CC)_{ring} + \delta(CCC)_{ring} + \delta(HCC)_{ring}$	

Table 1. Observed (Raman and Infrared) and calculated vibrational wavenumbers (cm⁻¹) for DB thiophene (C1).

967		977	$\tau(HC_{enone}C_{enone}C_{ring}) + \tau(HC_{enone}C_{ring}C_{ring})$
959	963	950	$v(CC)_{enone} + \delta(CCC)_{enone}$
873		881	$\tau(HCSC)_{ring} + \tau(HCCC)_{ring} + \tau(CCCC)_{ring}$
856		867	$\tau(HCCC)_{enone} + \gamma(OCCC)_{enone}$
836		837	$v(SC)_{ring} + \delta(CCC)_{ring}$
814	815	825	$\tau(HCCC)_{enone} + \tau(HCCC)_{ring}$
	788	801	$\delta(OCC)_{enone} + \delta(CCC)_{enone}$
727		727	$\nu(SC)_{ring} + \delta(CCC)_{ring}$
711	705	716	$v(SC)_{ring} + \delta(CCC)_{ring}$
681	680	679	$\delta(OCC)_{enone} + \delta(CCC)_{ring} + \delta(SCC)_{ring}$
666		675	$\tau(HCSC)_{ring} + \gamma(OCCC)_{enone}$
579		584	$\nu(SC)_{ring} + \delta(CCC)_{ring} + \delta(SCC)_{ring}$
564		559	$\tau(CCCC)_{ring} + \tau(SCCC)_{ring}$
503	504	480	δ(CCC) _{enone}
477		478	$\tau(CCCC)_{ring} + \tau(C_{ring}C_{ring}C_{enone}) + \tau(SCCC)_{ring}$
397		375	$\delta(CCC)_{enone} + \delta(C_{ring}C_{ring}C_{enone}) + \delta(C_{enone}C_{ring}S)$
314		303	$\tau(C_{ring}C_{ring}C_{enone}) + \tau(CCCC)_{enone} + \tau(SCCC)_{ring}$
264		263	$\delta(OCC)_{enone} + \delta(CCC)_{enone} + \delta(C_{enone}C_{ring}S)$
191	197	196	τ(CCCC) _{enone}
	71	88	lattice

The IR absorptions in the 3020-3100 cm⁻¹ region arise from the CH stretching vibrations. In this region the Raman spectrum shows two bands, at 3088 and 3074 cm⁻¹, both assigned to CH stretching modes of the thiophene rings. Two other Raman bands at 3012 and 2990 cm⁻¹ are due to the antisymmetric and symmetric olefinic CH stretching modes, respectively.

In the fingerprint region, there are two weak Raman bands at 1658 and 1604 cm⁻¹. The former was assigned as a combination of stretching modes of the carbonyl group and of the C=C bonds, while the latter was attributed to stretching of CC bonds. A very strong Raman band at 1567 cm⁻¹ was assigned to a combination of the carbonyl and C=C stretchings. For curcumin, the intense band related to the diketone stretching mode is recorded at 1626 cm⁻¹[38]. On the IR spectrum, said bands appear at 1662, 1602 and 1562 cm⁻¹, respectively.

A strong Raman band at 1419 cm⁻¹ was assigned to a combination of v(CC) and δ (HCC) bands of the thiophene rings. Accordingly, this mode appears at 1425 cm⁻¹ in thiophene substituted chalcone [39]. In the IR spectrum, the same mode is seen as a medium intensity absorption at 1419 cm⁻¹.

Figure 3. Raman (a) and IR (b) spectra of DB thiophene.

In the Raman spectrum, two very weak modes occur at 1359 and 1309 cm⁻¹, that were assigned as a combination of v(CC) and δ (HCS) of the thiophene rings, and as v(CC)+ δ (HCC) of the enone spacers, respectively. The three very weak bands at 1271,

1225 and 1199 cm⁻¹ are not visible for the C0 conformer, appearing as very weak bands for the other two. The first one was assigned as HCC bending modes of both enone and thiophene rings, while the second is a combination of δ (HCS) and δ (HCC) of the thiophene atoms. The third band was assigned as v(CC) of the enone spacer and δ (CCC) of the rings. Three medium intensity features appear at 873, 856 and 836 cm⁻¹: the first two are torsional modes from the rings and the enones, while the last was assigned to a S-C stretching and a C-C-C bending modes. Finally, an isolated weak Raman band at 504 cm⁻¹ was ascribed to the bending of the enone group. The equivalent IR band is a medium absorption at 503 cm⁻¹.

3.3 Efflux Pump Modulation

Unlike the standard inhibitors, DB thiophene did not reveal clinically relevant antibacterial activity, with a MIC \geq 4162.60 µM. However, when used in association with norfloxacin against SA-1199B, significant synergistic effects were noted - DB thiophene was able to reduce the MIC of norfloxacin by 30%. This modulating effect against NorA efflux pump is due to the inhibition of the efflux pump mechanism. That could be confirmed by examining the association of this curcumin derivative with EtBr, since an identical behaviour was observed.

Similar compounds containing the thiophene rings were already tested as inhibitors of the SA-1199B NorA efflux pump and showed a significant enhancement in the activity of ciprofloxacin, with an increase in the intracellular level of the antibiotic, confirming the mode of action as an EPI [40–42]. In the present experiment, DB thiophene led to an effective reduction of norfloxacin MIC compared to CCCP. When used in conjunction with EtBr, DB thiophene was effective as CPZ, while there was no statistical difference compared to CCCP. To sum up, the essays indicated that DB thiophene seems to be an inhibitor of NorA when co-administered with norfloxacin, and it is more effective than CCCP (Figure 4a).

The mutant SA-K2068 is recognized as having a multi-drug resistance that is mediated by MepA instead of NorA. The essays show the ability of DB thiophene to inhibit the MepA efflux pump, with a two-fold reduction in MIC of ciprofloxacin. This is a remarkable result since DB thiophene performed better than CPZ, although it was not as effective as CCCP (Figure 4b). We can't make direct comparisons with other curcumin derivatives, since, to the best of our knowledge, there are no studies on NorA or MepA efflux pump inhibition involving other curcuminoids. The mechanism by which DB

thiophene inhibits the NorA or MepA efflux pumps can be explored by molecular docking (to be discussed further on).

Figure 4. (a) MIC of Norfloxacin and EtBr, in association with the standard inhibitors and in association with DB thiophene against the strain *S. aureus* 1199B. ${}^{a1,a2}p<0.0001$ vs control, ${}^{b1,b2}p<0.0001$ vs CPZ, ${}^{c1,c2}p<0.0001$ vs CCCP.

(b) MIC of Ciprofloxacin and EtBr, in association with the standard inhibitors and in association with DB thiophene against the strain *S. aureus* K2068. $a_{1,a^2}p<0.0001 vs$ control, $b_{1,b^2}p<0.0001 vs$ CPZ, $c_{1,c^2}p<0.0001 vs$ CCCP (bottom).

3.4 Docking Results

Figure 5a shows the five best poses of DB thiophene, inserted in the binding site of the NorA model, with energies ranging from -26.527 to -26.276 kJ/mol. For comparison, Li *et al.* [43] found that the affinity of tetracycline to the same protein was -28.033 kJ/mol. In our simulations, norfloxacin best pose energy was -32.677 kJ/mol. Docking calculations showed that there are two preferred regions in the binding site of the NorA model, labeled regions 1 and 2 (Figure 5a).

Figure 5b displays a 2D ligand-protein interaction diagram, with the contact distances in green. The best pose of DB thiophene is in region 1. In region 2, the C=O group is favorably oriented to form a hydrogen bond with Arg310 (Figure 5b). Norfloxacin best pose overlaps with poses of DB thiophene in both regions, as can be seen in Figure 5a. Additionally, and confirming these results, Dantas *et al.* [44] described the binding site of norfloxacin of a NorA model identical to the one reported here, with interactions with residues 340, 310, 51 and 16. It can thus be argued that DB thiophene hinders the binding of norfloxacin to NorA, being expelled from the bacteria in place of the antibiotic.

All these results suggest that DB thiophene is likely to function as a competitive inhibitor of NorA efflux protein.

Figure 5. (a) The best five poses of DB thiophene (green) and the best pose of norfloxacin (blue) on the binding site of the NorA model. Regions on the binding site are marked 1 and 2. (b) 2D ligand-protein interaction diagram of DB thiophene and the NorA model on regions 1 and 2.

4. Conclusions

The compound (1E,4E)-1,5-Di(thiophen-2-yl)penta-1,4-dien-3-one was synthesised and fully characterised. A study on its vibrational properties was performed using FTIR and FT-Raman spectroscopies as well as quantum chemical calculations at the DFT level (for the three possible conformers of the compound). The experimental and calculated (scaled) vibrational spectra were compared and showed a very good correspondence. These results and the description of the normal modes according to the PED, were used to elucidate the vibrational wavenumber assignments of this synthetic substance. It was shown that this curcuminoid not only inhibits the NorA efflux pump, but also the MepA, thus being a potential new EPI. DB thiophene interacts with the binding site of efflux pump models and it's likely that DB thiophene acts as a competitive inhibitor of efflux pumps.

Author's Contribution

Mauro M. Oliveira – investigation, Writing, original draft, Formal analysis, Helcio S. Santos – investigation, conducted the spectroscopic analysis by NMR, Henrique D. M. Coutinho - conceptualization, conceived the experimental design of the microbiological studies, Paulo N. Bandeira - investigation, performed the synthesis of the compound, Priscila T. da Silva – investigation, performed the synthesis of the compound, Thiago S. Freitas – investigation, conducted the efflux pump inhibition assays, Janaina E. Rocha – investigation, conducted the efflux pump inhibition assays, Jayze C. Xavier investigation, carried out the antibacterial assays, Fabia F. Campina – investigation, carried out the antibacterial assays, Cristina R. S. Barbosa - investigation, carried out the antibacterial assays, José B. Araújo Neto – investigation, carried out the antibacterial assays, Raimundo L. S. Pereira – investigation, performed modulatory antimicrobial activity assays, Maria M. C. Silva – investigation, performed modulatory antimicrobial activity assays, Débora F. Muniz – investigation, performed modulatory antimicrobial activity assays, Alexandre M.R. Teixeira - investigation, carried out the Raman spectroscopy studies, Vanessa M. Frota - investigation, conducted the analysis by CG-MS, Tigressa H. S. Rodrigues – investigation, conducted the analysis by CG-MS, Ana M. Amado - writing and investigation, reviewed the manuscript and conducted the Raman analysis, Maria P. M. Marques – overviewed the writing, reviewed the manuscript and aided on the conceptualization, Luis A. E. Batista de Carvalho – supervised the experiments, reviewed manuscript, Carlos E. S. Nogueira - investigation, carried out the DFT calculations, supervised and wrote the original draft. All authors have read and agreed to the published version of the manuscript.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

Financial support is acknowledged: from the Portuguese Foundation for Science and Technology (FCT) (UIDB/00070/2020)

CENAUREMN - Northeastern Center for the Application and Use of Nuclear Magnetic Resonance and EMBRAPA AGROINDÚSTRIA TROPICAL-Laboratório Multiusuário de Química de Produtos Naturais.

References

- A.N. Nurfina, M.S. Reksohadiprodjo, H. Timmerman, U.A. Jenie, D. Sugiyanto,
 H. Van Der Goot, Synthesis of some symmetrical curcumin derivatives and their antiinflammatory activity, Eur. J. Med. Chem. 32 (1997) 321–328.
 doi:10.1016/S0223-5234(97)89084-8.
- [2] A. Goel, A.B. Kunnumakkara, B.B. Aggarwal, Curcumin as "Curecumin": From kitchen to clinic, Biochem. Pharmacol. 75 (2008) 787–809. doi:10.1016/j.bcp.2007.08.016.
- [3] I. Chattopadhyay, K. Biswas, U. Bandyopadhyay, R.K. Banerjee, Turmeric and curcumin: Biological actions and medicinal applications, Curr. Sci. 87 (2004) 44–53.
- [4] A. Mazumder, K. Raghavan, J. Weinstein, K.W. Kohn, Y. Pommier, Inhibition of human immunodeficiency virus type-1 integrase by curcumin, Biochem.
 Pharmacol. 49 (1995) 1165–1170. doi:10.1016/0006-2952(95)98514-A.
- [5] M.A. Tomren, M. Másson, T. Loftsson, H.H. Tønnesen, Studies on curcumin and curcuminoids. XXXI. Symmetric and asymmetric curcuminoids: Stability, activity and complexation with cyclodextrin, Int. J. Pharm. 338 (2007) 27–34. doi:10.1016/j.ijpharm.2007.01.013.
- [6] G. Liang, L. Shao, Y. Wang, C. Zhao, Y. Chu, J. Xiao, Y. Zhao, X. Li, S. Yang, Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents, Bioorganic Med. Chem. 17

(2009) 2623–2631. doi:10.1016/j.bmc.2008.10.044.

- [7] V. Basile, E. Ferrari, S. Lazzari, S. Belluti, F. Pignedoli, C. Imbriano, Curcumin derivatives: Molecular basis of their anti-cancer activity, Biochem. Pharmacol. 78 (2009) 1305–1315. doi:10.1016/j.bcp.2009.06.105.
- [8] G. Liang, S. Yang, L. Jiang, Y. Zhao, L. Shao, J. Xiao, F. Ye, Y. Li, X. Li, Synthesis and Anti-bacterial Properties of Mono-carbonyl Analogues of Curcumin, Chem. Pharm. Bull. (Tokyo). 56 (2008) 162–167. doi:10.1248/cpb.56.162.
- [9] C. Zhao, Y. Zhang, P. Zou, J. Wang, W. He, D. Shi, H. Li, G. Liang, S. Yang, Synthesis and biological evaluation of a novel class of curcumin analogs as antiinflammatory agents for prevention and treatment of sepsis in mouse model, Drug Des. Devel. Ther. 9 (2015) 1663–1678. doi:10.2147/DDDT.S75862.
- B.W. Ho, W.S. Shin, S. Lee, M.A. Chan, Synthesis of novel curcumin mimics with asymmetrical units and their anti-angiogenic activity, Bioorganic Med. Chem. Lett. 15 (2005) 3782–3786. doi:10.1016/j.bmcl.2005.05.064.
- [11] Costa S. S., Viveiros M., Amaral L., Couto I., Multidrug efflux pumps in Staphylococcus aureus: an update., Open Microbiol. J. 7 (2013) 59–71. doi:10.2174/1874285801307010059.
- S.R. Tintino, C.D.M. Oliveira-Tintino, F.F. Campina, R.L.P. Silva, M. do S. Costa, I.R.A. Menezes, J.T. Calixto-Júnior, J.P. Siqueira-Junior, H.D.M. Coutinho, T.C. Leal-Balbino, V.Q. Balbino, Evaluation of the tannic acid inhibitory effect against the NorA efflux pump of Staphylococcus aureus, Microb. Pathog. 97 (2016) 9–13. doi:10.1016/j.micpath.2016.04.003.
- [13] A.A. Neyfakh, C.M. Borsch, G.W. Kaatz, Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter, Antimicrob. Agents Chemother. 37 (1993) 128–129. doi:10.1128/AAC.37.1.128.
- G.W. Kaatz, S.M. Seo, C.A. Ruble, Mechanisms of fluoroquinolone resistance in staphylococcus aureus, J. Infect. Dis. 163 (1991) 1080–1086.
 doi:10.1093/infdis/163.5.1080.
- [15] G.W. Kaatz, F. McAleese, S.M. Seo, Multidrug resistance in Staphylococcus

aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein, Antimicrob. Agents Chemother. 49 (2005) 1857–1864. doi:10.1128/AAC.49.5.1857-1864.2005.

- B.D. Schindler, P. Jacinto, G.W. Kaatz, Inhibition of drug efflux pumps in Staphylococcus aureus: current status of potentiating existing antibiotics, Futur. Microbiol. 8 (2013) 491–507. doi:10.11250/chemotherapy1953.16.843.
- P. Singh, A. Anand, V. Kumar, Recent developments in biological activities of chalcones: A mini review, Eur. J. Med. Chem. 85 (2014) 758–777. doi:10.1016/j.ejmech.2014.08.033.
- [18] L. Claisen, A. Claparède, Condensationen von Ketonen mit Aldehyden., Berichte der Dtsch. Chem. Gesellschaft. 14 (1881) 2460–2468.
- [19] J.G. Schmidt, Ueber die Einwirkung von Aceton auf Furfurol und auf Bittermandelöl bei Gegenwart von Alkalilauge, Berichte der Dtsch. Chem. Gesellschaft. 14 (1881) 1459–1461. doi:10.1002/cber.188101401306.
- [20] W. Kohn, L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133–A1138.
 doi:10.1103/PhysRev.140.A1133.
- [21] and D.J.F. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
 Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji,
 X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B.
 Mennucci, H. P. Hratchian, J. V. Ort, Gaussian 09, Revision A.02, ([s.d.]).
- P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields, J. Phys. Chem. 98 (1994) 11623–11627. doi:10.1021/j100096a001.
- [23] NIST Computational Chemistry Comparison and Benchmark Database, ([s.d.]). doi:10.18434/T47C7Z.
- [24] M.H. Jamróz, Vibrational Energy Distribution Analysis (VEDA): Scopes and limitations, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 114 (2013) 220– 230. doi:10.1016/J.SAA.2013.05.096.

- [25] M.A. WIKLER, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard, CLSI. 26 (2006) M7-A7.
- [26] H. Yoshida, M. Bogaki, S. Nakamura, K. Ubukata, M. Konno, Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones, J. Bacteriol. 172 (1990) 6942–6949. doi:10.1128/jb.172.12.6942-6949.1990.
- [27] G.W. Kaatz, S.M. Seo, C.A. Ruble, Efflux-mediated fluoroquinolone resistance in Staphylococcus aureus, Antimicrob. Agents Chemother. 37 (1993) 1086–1094. doi:10.1128/AAC.37.5.1086.
- [28] P. Petersen, A. Ruzin, S.J. Projan, E. Murphy, P.A. Bradford, F. McAleese, P.M. Dunman, A Novel MATE Family Efflux Pump Contributes to the Reduced Susceptibility of Laboratory-Derived Staphylococcus aureus Mutants to Tigecycline, Antimicrob. Agents Chemother. 49 (2005) 1865–1871. doi:10.1128/aac.49.5.1865-1871.2005.
- [29] J.M. Pagès, M. Masi, J. Barbe, Inhibitors of efflux pumps in Gram-negative bacteria, Trends Mol. Med. 11 (2005) 382–389.
 doi:10.1016/j.molmed.2005.06.006.
- [30] M. Malléa, J. Chevalier, A. Eyraud, J.M. Pagès, Inhibitors of antibiotic efflux pump in resistant Enterobacter aerogenes strains, Biochem. Biophys. Res. Commun. 293 (2002) 1370–1373. doi:10.1016/S0006-291X(02)00404-7.
- [31] S. Sabatini, G.W. Kaatz, G.M. Rossolini, D. Brandini, A. Fravolini, From phenothiazine to 3-phenyl-1,4-benzothiazine derivatives as inhibitors of the Staphylococcus aureus NorA multidrug efflux pump, J. Med. Chem. 51 (2008) 4321–4330. doi:10.1021/jm701623q.
- [32] G.W. Kaatz, V. V. Moudgal, S.M. Seo, J.E. Kristiansen, Phenothiazines and thioxanthenes inhibit multidrug efflux pump activity in Staphylococcus aureus, Antimicrob. Agents Chemother. 47 (2003) 719–726. doi:10.1128/AAC.47.2.719-726.2003.
- [33] GraphPad Software, La Jolla California USA, ([s.d.]).
- [34] A. Waterhouse, M. Bertoni, S. Bienert, G. Studer, G. Tauriello, R. Gumienny,

F.T. Heer, T.A.P. de Beer, C. Rempfer, L. Bordoli, R. Lepore, T. Schwede, SWISS-MODEL: homology modelling of protein structures and complexes, Nucleic Acids Res. 46 (2018) W296–W303. doi:10.1093/nar/gky427.

- [35] G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, AutoDock4 and AutoDockTools4: Automated Docking with with Selective Receptor Flexibility, J. Comput. Chem. 30 (2010) 2785–2791. doi:10.1002/jcc.21256.
- [36] S. Murugavel, G. Ganesh, A. SubbiahPandi, R. Murugan, S. SrimanNarayanan, (E,E)-1,5-Di-2-thienylpenta-1,4-dien-3-one, International Union of Crystallography, 2008. doi:10.1107/S1600536808026603.
- [37] S. V. Tseukerman, V.M. Nikitchenko, V.D. Orlov, V.F. Lavrushin, DIPOLE MOMENTS OF THIOPHENE OF CHALCONES AND THEIR VINYLOGS, Chem. Heterocycl. Compd. 3 (1967) 232–238.
- [38] P.R.K. Mohan, G. Sreelakshmi, C. V. Muraleedharan, R. Joseph, Water soluble complexes of curcumin with cyclodextrins: Characterization by FT-Raman spectroscopy, Vib. Spectrosc. 62 (2012) 77–84. doi:10.1016/j.vibspec.2012.05.002.
- [39] T.A. de Toledo, R.C. da Costa, H.M. Al-Maqtari, J. Jamalis, P.S. Pizani, Temperature dependence of the Raman spectrum of 1-(4-chlorophenyl)-3-(2thienyl)prop-2-en-1-one, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 180 (2017) 9–17. doi:10.1016/j.saa.2017.02.051.
- [40] J. Fournier dit Chabert, B. Marquez, L. Neville, L. Joucla, S. Broussous, P. Bouhours, E. David, S. Pellet-Rostaing, B. Marquet, N. Moreau, M. Lemaire, Synthesis and evaluation of new arylbenzo[b]thiophene and diarylthiophene derivatives as inhibitors of the NorA multidrug transporter of Staphylococcus aureus, Bioorganic Med. Chem. 15 (2007) 4482–4497. doi:10.1016/j.bmc.2007.04.023.
- [41] F. Liger, P. Bouhours, C. Ganem-Elbaz, C. Jolivalt, S. Pellet-Rostaing, F.
 Popowycz, J.M. Paris, M. Lemaire, C2 Arylated Benzo[b]thiophene Derivatives as Staphylococcus aureus NorA Efflux Pump Inhibitors, ChemMedChem. 11 (2016) 320–330. doi:10.1002/cmdc.201500463.

- [42] S. Alibert, J. Pagès, Efflux pump inhibitors in bacteria, Expert Opin. Ther. Pat. 17 (2007) 883–888. doi:10.1517/13543776.17.8.883.
- [43] Y. Li, Z.T. Cao, X.Y. Wang, X.Z. Ge, Expression of the TetA gene encoding TetA efflux protein in E. coli contributes to its increased bacterial resistance toward berberine, J. Asian Nat. Prod. Res. 20 (2018) 374–384. doi:10.1080/10286020.2017.1384818.
- [44] N. Dantas, T.M. de Aquino, J.X. de Araújo-Júnior, E. da Silva-Júnior, E.A.
 Gomes, A.A.S. Gomes, J.P. Siqueira-Júnior, F.J.B. Mendonça Junior,
 Aminoguanidine hydrazones (AGH's) as modulators of norfloxacin resistance in
 Staphylococcus aureus that overexpress NorA efflux pump, Chem. Biol. Interact.
 280 (2018) 8–14. doi:10.1016/j.cbi.2017.12.009.

Supplementary Material

Spectroscopic Characterization and Efflux Pump Modulation of a Thiophene Curcumin Derivative

Mauro M. Oliveira^{a*}, Helcio S. Santos^{a,b}, Henrique D.M Coutinho^a, Paulo N. Bandeira^b, Priscila T. da Silva^a, Thiago S. Freitas^a, Janaina E. Rocha^a, Jayze C. Xavier^a, Fabia F. Campina^a, Cristina R.S. Barbosa^a, José B. Araújo Neto^a, Raimundo L.S. Pereira^a, Maria M.C. Silva^a, Débora F. Muniz^a, Alexandre M.R. Teixeira^{a,c}, Vanessa M. Frota^b, Tigressa H. S. Rodrigues^b, Ana M. Amado^d, Maria P.M. Marques^{d,e}, Luis A. E. Batista de Carvalho^d, and Carlos E.S. Nogueira^{a,c,d}

^aDepartment of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil.

- ^bScience and Technology Centre Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil.
- ^cDepartment of physics, Regional University of Cariri, Crato, CE, Brazil.
- ^dUniversidade de Coimbra, Unidade de I&D Quimica-Física Molecular (QFM-UC), Department of Chemistry, 3004-535 Coimbra, Portugal.

^eUniversidade de Coimbra, Department of Life Sciences, 3000-456 Coimbra, Portugal.

^{*}Corresponding author. Department of Biological Chemistry, Regional University of Cariri, Campus Pimenta II, CEP: 63.100-000, Crato, CE, Brazil.

E-mail addresses: mauropandi@gmail.com

Table S1. Calculated vibrational wavenumbers (in cm⁻¹) unscaled and scaled by the scale factor 0.9600 (ω <2000) and 0.942 (ω ≥2000), experimental Raman and infrared bands positions in units of cm⁻¹ and assignment of vibrational modes for DB thiophene C0.

Wcalc	Wscal	WRaman	Wir	Assignment of the molecular vibrations with PED (%)
3272	3082	3088vw	3088w	v(C15H25)(95)
3272	3082	3074vw	3071w	v(C10H21)(95)
3236	3048		3044vw	v(C11H22)(23) + v(C12H23)(28) + v(C14H24)(25) + v(C16H26)(20)
3236	3048			v(C11H22)-(20) + v(C12H23)-(25) + v(C14H24)(28) + v(C16H26)(23)
3222	3035			v(C11H22)(29) + v(C12H23)-(26) + v(C14H24)-(20) + v(C16H26)(22)
3222	3035	3012vw	3013vw	v(C11H22)-(22) + v(C12H23)(20) + v(C14H24)-(26) + v(C16H26)(29)
3187	3002			v(C3H17)(47) + v(C4H18)(47)
3178	2994			v(C3H17)-(34) + v(C4H18)(34) + v(C5H19)(16) + v(C6H20)-(16)
3175	2991	2990vw		v(C5H19)(47) + v(C6H20)(46)
3173	2989			v(C3H17)(15) + v(C4H18)-(15) + v(C5H19)(34) + v(C6H20)-(35)
1740	1671	1658w	1662s	v(O2C1)(56) + v(C4C6)-(11) + v(C5C3)-(11)
1663	1596	1604m	1602vs	v(C4C6)-(30) + v(C5C3)(30)
1636	1571	1567vs	1562vs	v(O2C1)-(31) + v(C4C6)-(21) + v(C5C3)-(21)
1580	1517	1512w	1512s	$\nu(C10C11)(11) + \nu(C15C16)-(12) + \nu(C7C14)(20) + \nu(C12C8)-(19)$
1579	1516			v(C10C11)-(12) + v(C15C16)-(11) + v(C7C14)(19) + v(C12C8)(21)
1477	1418	1425s		v(C10C11)(17) + v(C15C16)-(17)
1475	1416	1420vs	1419s	v(C10C11)(17) + v(C15C16)(17)
1408	1351	1376vw	1376w	$\delta(H21C10S9)-(13) + \delta(H25C15S13)-(12)$
1407	1351	1359w	1359w	$v(C11C12)-(10) + v(C16C14)(10) + \delta(H21C10S9)-(12)$
1070	1017		1010	δ(H25C15S13)(12)
1372	1317	1200	1319w	$v(C1C4)-(12) + v(C3C1)(12) + \delta(H1/C3C5)(17) + \delta(H18C4C6)-(17)$
1358	1304	1309W	130/W	V(C4C6)-(11) + V(C5C3)-(11) + 0(H1/C3C5)-(12) + 0(H18C4C6)-(12) $\delta(H19C5C8)(20) + \delta(H29C6C7)(20)$
1335	1282			$v(C4C6)-(13) + v(C5C3)(13) + \delta(H19C5C8)-(22) + \delta(H20C6C7)(22)$
1323	1202	1271w	1270w	$\delta(H17C3C5)(27) + \delta(H18C4C6)(27) + \delta(H19C5C8)(11) +$
1020	12/0	12/10	12/011	δ(H20C6C7)(11)
1283	1231	1225vw	1224w	δ (H22C11C12)-(11) + δ (H23C12C11)(18) + δ (H24C14C16)(18) +
				δ(H26C16C15)(12)
1282	1231	1199w	1199w	$\delta(\text{H22C11C12})(11) + \delta(\text{H23C12C11}) - (17) + \delta(\text{H24C14C16})(18) + \delta(\text{H24C14C16})(1$
1161	1115		1160	$\delta(\text{H26U16U15})(12)$ $\delta(\text{H26U16U15}) + \delta(\text{H26U16C}) + \delta(\text{C6C7}) + \delta(\text{C15C16C}) + \delta(\text{C5C8}) + \delta(\text{C5C8}$
1101	1115		1109w	$\delta(124C14C7) + \delta(123C12C8) + \delta(C0C7) + \delta(C13C10C14) + \delta(C3C8) + \delta(C8C12C11)$
1161	1114	1095w	1106w	$\delta(\text{H24C14C7}) + \delta(\text{H23C12C8}) + v(\text{C6C7}) + \delta(\text{C15C16C14}) + v(\text{C5C8}) +$
				δ(C8C12C11)
1122	1077	1088w	1095w	$v(C1C4)(11) + v(C3C1)-(11) + \delta(H21C10S9)(14) + \delta(H22C11C12)(10) +$
1112	1000			$\delta(\text{H25C15S13})$ -(14) + $\delta(\text{H26C16C15})$ (10)
1115	1068			$v(C10C11)-(10) + v(C15C10)-(10) + o(H21C1059)(24) + \delta(H25C15S13)(24)$
1102	1058			$v(C11C12)-(10) + v(C16C14)(10) + \delta(H21C10S9)(11) + \delta(H25C15S13)$ -
				(11)
1071	1028	1047w	1045w	$\nu(C11C12)(13) + \nu(C16C14)(13) + \delta(H23C12C11)(13) +$
				δ(H24C14C16)(13)
1062	1020	1041w	1038w	$\delta(C/C14C16)(10) + \delta(H23C12C11)(10) + \delta(H24C14C16)-(10)$
1030	988		0.67	$\tau(H19C5C8C12)-(35) + \tau(H20C6C7C14)(35)$
1021	980	0.62	96/w	$\tau(H19C5C8C12)(35) + \tau(H20C6C7C14)(35)$
994	954	963w	959w	$v(C1C4)(21) + v(C3C1)(21) + \delta(C5C3C1) - (10) + \delta(C1C4C6) - (10)$
917	881		072	t(H22C11C12C8)(25) + t(H26C16C15S13)(29)
917	880		8/3W	t(H22C11C12C8)(27) + t(H20C10C15S13)-(20)
903	807		836W	t(H1/C3C5C8)(33) + t(H18C4C0C7)-(33) + γ(O2C3C4C1)(13)
8/1	830		836W	v(S9C10)(12) + v(S13C15)(12) + o(S9C10C11)(12) + o(S13C15C16)(12) v(S9C10)(22) + v(S13C15)(22) + S(C10C11C12)(12) + S(C15C15C14)(14)
850	034 925			V(39C10)(22) + V(313C13)(22) + 0(C10C11C12)(12) + 0(C13C10C14)(14) S(C10C11C12)(10) + S(C15C1(C14)(11))
039 855	020 820	815	Q14	$\sigma(U_1) = \sigma(U_1) + \sigma(U_1) = \sigma(U_1) + \sigma$
840	820 806	013VW	014W	$\tau(\text{H12}(25)(25)) + \tau(\text{H11}(26)(25))$ $\tau(\text{H22}(25)(25)) + \tau(\text{H24}(24)(25)(25))$
040 833	800	788		$\pi(1123 \oplus 12 \oplus 11010) + \pi(1124 \oplus 14 \oplus 10 \oplus 13)(30)$ $\pi(H17C3C5C8)_{(10)} + \pi(H18C4C6C7)_{(10)} + \pi(H23C12C11C10)_{(24)} +$
000	000	700VW		τ (H24C14C16C15)-(24)
768	737			δ(C7C14C16)(11)
747	717		727w	$v(S9C10)(19) + v(S13C15)-(18) + \delta(C10C11C12)-(23) +$
				δ(C15C16C14)(21)
743	714	705vw	711w	$v(S9C10)-(10) + v(S13C15)-(10) + \delta(C10C11C12)(27) + \delta(C15C16C14)(26)$

722	693			τ (H21C10S9C8)(19) + τ (H25C15S13C7)-(19) + γ (O2C3C4C1)-(26)
713	684	680vw	681w	τ (H21C10S9C8)(36) + τ (H22C11C12C8)-(11) + τ (H25C15S13C7)(36) +
				τ(H26C16C15S13)(12)
701	673		666vw	$\tau(\text{H21C10S9C8})(17) + \tau(\text{H25C15S13C7}) - (17) + \gamma(\text{O2C3C4C1})(35)$
675	648			$\delta(O2C1C4)(32) + \delta(S9C10C11)(15) + \delta(S13C15C16)-(15)$
600	576		579w	$\delta(\text{S9C10C11})(22) + \delta(\text{S13C15C16})(22)$
580	557		564w	τ (C10C11C12C8)(27) + τ (C15C16C14C7)(29)
573	550			τ (C10C11C12C8)-(26) + τ (C15C16C14C7)(30)
569	546			$\delta(O2C1C4)$ -(19) + $\delta(S9C10C11)(17)$ + $\delta(S13C15C16)$ -(17)
496	476	504vw	503w	$\delta(C8C5C3)-(12) + \delta(C4C6C7)-(12) + \delta(C3C1C4)(38)$
495	475		477w	τ (S9C10C11C12)-(35) + τ (S13C15C16C14)-(24)
489	469			τ (S9C10C11C12)-(34) + τ (S13C15C16C14)(23)
369	354		397vw	$\delta(C8C5C3)(12) + \delta(C4C6C7) - (12) + \delta(C12C8C5) - (12) +$
				$\delta(C11C12C8)(12) + \delta(C6C7S13)-(18)$
305	293		314vw	$\tau(C15C16C14C7)(10) + \tau(C11C12C8C5)(12) + \tau(C8C5C3C1)(13) +$
				$\tau(C1C4C6C7)$ -(13)
300	288			$\tau(C15C16C14C7)-(11) + \tau(C11C12C8C5)(14) + \tau(C8C5C3C1)(15) + (110000000000000000000000000000000000$
200	260		264	$\tau(C1C4C6C')(15) + \tau(S13C15C16C14)-(10)$
280	209		204VW	0(02C1C4)(20) + 0(C5C5C1) - (22) + 0(C1C4C6)(22)
218	209	107	101	$\delta(C12C8C5)-(27) + \delta(C6C/S13)(27) + \delta(C3C1C4)(21)$
200	192	197vw	191vw	$\tau(CSC3C1C4)(38) + \tau(C3C1C4C6)(38)$
175	168			v(C1C4)(11) v(C3C1)(11)
124	119			$\tau(C5C3C1C4)(15) + \tau(C11C12C8C5)-(24) + \tau(C3C1C4C6)-(15) + \tau(C6C14S12C7)(21)$
107	103			$\gamma(C0C14515C7)(21)$ $\delta(C8C5C3)_{2}(20) \pm \delta(C4C6C7)(20) \pm \delta(C5C3C1)(10) \pm \delta(C12C8C5)_{2}(18) \pm \delta(C12C8)_{2}(18) \pm \delta(C12C8)_{2}(18) \pm \delta($
107	105			$\delta(C6C7S13)-(18) + \delta(C1C4C6)-(10)$
93	90	71w		$\tau(C11C12C8C5)(26) + \tau(C8C5C3C1) - (21) + \tau(C1C4C6C7) - (21) +$
				γ(C6C14S13C7)(24)
79	76			τ (C4C6C7C14)(19) + τ (C12C8C5C3)-(19) + τ (C8C5C3C1)-(23) +
				$\tau(C1C4C6C7)(23)$
39	37			$\delta(C8C5C3)-(16) + \delta(C4C6C7)-(16) + \delta(C5C3C1)(19) + \delta(C1C4C6)(19) + \delta(C1C4C6)($
24	22			$\delta(C3C1C4)$ -(19)
24	23			$\tau(C_{2}C_{1}C_{4}C_{6})(11) + \tau(C_{3}C_{3}C_{1}C_{4})(12) + \tau(C_{1}2C_{8}C_{5}C_{3})(33) + \tau(C_{2}C_{1}C_{4}C_{6})(11)$
22	21			$\tau(C4C6C7C14) - (12) + \tau(C5C3C1C4)(29) + \tau(C12C8C5C3)(12) +$
	21			$\tau(C3C1C4C6)-(29)$

Abreviation: v, stretching; δ , bending; τ , torsion; γ , out-of-plane; vw, very weak; w, weak; m, medium; s, strong; vs, very strong.

Table S2. Calculated vibrational wavenumbers (in cm⁻¹) unscaled and scaled by the scale factor 0.9600 (ω <2000) and 0.942 (ω ≥2000), experimental Raman and infrared bands positions in units of cm⁻¹ and assignment of vibrational modes for DB thiophene C1.

Wcalc	Wscal	(WRaman	Wir	Assignment of the molecular vibrations with PED (%)
3271	3081	3088vw	3088w	v(C10H21)(95)
3269	3079	3074vw	3071w	v(C15H25)(94)
3235	3047			v(C11H22)(42) + v(C12H23)(53)
3235	3047		3044vw	v(C14H24)(32) + v(C16H26)(62)
3221	3034			$\nu(C11H22)(53) + \nu(C12H23)-(45)$
3220	3034	3012vw	3013vw	$\nu(C14H24)(67) + \nu(C16H26)-(32)$
3185	3000			v(C3H17)(76) + v(C4H18)(16)
3175	2990	2990vw		v(C4H18)(17) + v(C5H19)(76)
3173	2989			$\nu(C3H17)(16) + \nu(C4H18)-(21) + \nu(C5H19)(15) + \nu(C6H20)(48)$
3170	2986			v(C4H18)(45) + v(C6H20)(45)
1742	1673	1658w	1662s	v(O2C1)(54) + v(C3C5)-(10) + v(C6C4)-(12)
1666	1599	1604m	1602vs	v(C3C5)-(26) + v(C6C4)(32)
1639	1573	1567vs	1562vs	v(O2C1)-(32) + v(C3C5)-(26) + v(C6C4)-(15)
1580	1517	1512w	1512s	$v(C10C11)-(21) + v(C8C12)(37) + \delta(H23C12C11)(13)$
1578	1514			$v(C15C16)-(21) + v(C14C7)(35) + \delta(H24C14C16)(14)$
1485	1426	1425s		$\nu(C15C16)(39) + \nu(C14C7)(14) + \nu(C16C14)-(12) + \delta(H26C16C15)-(12)$
1476	1417	1420vs	1419s	$v(C10C11)(33) + v(C8C12)(13) + v(C12C11)-(16) + \delta(H22C11C12)(14)$
1412	1355	1376vw	1376w	$\nu(C16C14)(18) + \delta(H25C15S13)(16) + \delta(H26C16C15)(11)$
1407	1351	1359w	1359w	$\nu(C10C11)(12) + \nu(C12C11)(15) + \delta(H21C10S9)(23)$
1362	1307		1319w	$\nu(C6C4)(10) + \delta(H18C4C6)(17) + \delta(H19C5C8)-(24)$
1353	1299	1309w	1307w	$v(C3C5)(15) + \delta(H17C3C5)$ (46)

1333	1279			$v(C6C4)(11) + \delta(H18C4C6)(24) + \delta(H19C5C8)(30) + \delta(H20C6C7)-(11)$
1311	1258	1271w	1270w	$\delta(\text{H17C3C5})(12) + \delta(\text{H20C6C7})(31) + \delta(\text{H24C14C16})(11) + \delta(\text{H26C16C15})(11) + \delta(\text{H26C15})(11) + \delta(\text{H26C15})(11) + \delta(H26C$
1283	1232	1225	12241	(11) $\delta(H21C10S0)(14) + \delta(H22C11C12)(23) + \delta(H23C12C11)(36)$
1265	1202	1225VW	1224w	$v(C7C6)(25) + \delta(C16C14C7) (15)$
1234	1203	1199w	1199w	v(C14C7) (17) + S(U20C6C7)(17) + S(U24C14C16)(20)
1255	1105	1005	1109w	V(C14C7)(17) + 0(H20C0C7)(17) + 0(H24C14C10)(50) V(C9C12)(12) + V(C12C11)(11) + V(C5C9)(12) + S(C9C12C11)(17)
1102	1115	1095W	1106w	V(C8C12) - (12) + V(C12C11)(11) + V(C5C8) - (12) + 0(C8C12C11)(17)
1125	1079	1088w	1095W	V(C1C3)(10) + V(C4C1) - (11) + 0(H21C10S9) - (11) + 0(H23C13S13)(10) + 8(H26C16C15) (12)
1116	1071			$0(\Pi 20 C10 C13) - (13)$ $y(C15 C16) (12) + \delta(H21 C10 S0)(18) + \delta(H25 C15 S13)(27) + \delta(H26 C16 C15) (14)$
1105	10/1			$v(C10C11)(10) + v(C12C11)(12) + v(C4C1)(12) + \delta(H21C10S0)(20)$
1077	1024	1047m	1045.00	v(C16C14)(10) + v(C12C11)(12) + v(C4C1)(12) + 0(1121C1039)-(20)
10/7	1034	1047w	1045w	V(C10C14)-(50) + 0(H24C14C10)-(50) + 0(H20C10C15)(15) V(C10C11)(10) + S(C9C12C11)(1c) + S(H22C12C12C11)(22)
1008	1025	1041 w	1058W	V(C12C11)(19) + 0(C6C12C11) - (10) + 0(H22C11C12)(10) + 0(H25C12C11)(25) -(117C205C9) (12) + -(11005C9C12)(52) + -(1200C(C7C14) (10)
1027	980		0.77	t(H1/C3C5C8)-(12) + t(H19C5C8C12)(52) + t(H20C6C7C14)-(19)
1018	977	0.62	96/w	t(H18C4C6C7)(10) + t(H19C5C8C12) - (19) + t(H20C6C7C14) - (57)
989	950	963w	959w	$v(C1C3)(27) + v(C4C1)(20) + \delta(C1C3C5)-(11)$
919	882			$\tau(H24C14C16C15)-(21) + \tau(H25C15S13C7)-(10) + \tau(H26C16C15S13)(50) + -(C12C15C14C14) + (12)$
917	881		873w	$\tau(S13C15C16C14)-(13) \\ \tau(H21C10S9C8)(11) + \tau(H22C11C12C8)(53) + \tau(H23C12C11C10)(19) + \tau(H23C11C10)(19) $
002	0.77		956	$\tau(C10C11C12C8)-(15)$
903	80/		856W	$t(H1/C5C5C8)-(52) + t(H18C4C6C7)(52) + \gamma(O2C5C4C1)-(15)$
872	837		836w	$v(S13C15)(24) + \delta(C15C16C14)(23)$
868	833			$v(S9C10)(38) + \delta(C10C11C12)(21) + \delta(S9C10C11)-(11)$
859	825	815vw	814w	$\tau(H17C3C5C8)-(26) + \tau(H18C4C6C7)-(23) + \tau(H24C14C16C15)-(16)$
841	807			$\tau(\text{H21C10S9C8}) - (10) + \tau(\text{H22C11C12C8}) - (12) + \tau(\text{H23C12C11C10})(39) + (12) + \tau(12) +$
025	901	700		$\tau(H24C14C16C15)(18)$ S(O2C1C4)(12) + S(C2C5C8)(10)
835 820	707	700VW		0(02C1C4)(13) + 0(C3C3C8)(10) = $(U17C2C5C8)(14) + -(U18C4C5C7)(15) + -(U18C10C11C10)(18) +$
830	191			$\tau(\Pi 1/C_{3}C_{3}C_{3}C_{4}) + \tau(\Pi 18C_{4}C_{6}C_{7}) + \tau(\Pi 25C_{1}2C_{1}C_{1}0) + \tau(\Pi 25C_{1}2C_{1}0) + \tau(\Pi 25C_{1}2C_{1}0$
757	727		72.7w	$v(S13C15)(31) + \delta(C15C16C14) - (13) + \delta(C16C14C7)(13)$
746	716	705vw	711w	$v(S1SC15)(51) + \delta(C10C11C12)(42)$
720	691	10511	,	$\tau(H21C10S9C8)_{*}(27) + \tau(H25C15S13C7)_{*}(10) + \gamma(O2C3C4C1)(25)$
714	686			$\tau(H21C10S9C8) \cdot (27) + \tau(H25C15S13C7) \cdot (10) + \tau(H26C16C15S13) \cdot (12)$
708	679	680w	681vw	$\delta(02C1CA)(14) + \delta(C15C16C14)(24) + \delta(S9C10C11)(12)$
703	675	0000	666vw	$\tau(H^{2})(11) + \theta(e^{-1})(12) + \theta(e^{-1})(12)$
671	644		0000	$\delta(S13C15C16)(50)$
608	584		570m	v(\$13C15C10(50)) $v($13C15)(10) + \delta($C16C14C7)(15) + \delta($9C10C11)(20) + \delta($13C15C16)(13)$
582	550		564w	$\pi(C15C16C14C7)(52) + \pi(S12C15C16C14) (12)$
575	550		504w	$\pi(\text{H}^{2}\text{C}^{1}\text{C}^{1}\text{C}^{1}) + \pi(\text{C}^{1}\text{C}^{1}\text{C}^{1}\text{C}^{1}) + \pi(\text{C}^{1}\text{C}^{1}\text{C}^{1}) + \pi(\text{C}^{1}\text{C}^{1}\text{C}^{1}) + \pi(\text{C}^{1}\text{C}^{1}\text{C}^{1}) + \pi(\text{C}^{1}\text{C}^{1}\text{C}^{1}) + \pi(\text{C}^{1}\text{C}^{1}\text{C}^{1}) + \pi(\text{C}^{1}\text{C}^{1}\text{C}^{1}) + \pi(\text{C}^{1}\text{C}^{1}) + \pi(\text{C}^{1}) + \pi(\text{C}^{1}$
575	551			$x_{(125C12C11C10)(12)} + x_{(C10C11C12C8)(40)} + x_{(C15C10C14C7)(14)}$
574	490	504	502	0(02C1C4)-(24) + 0(C10C14C7)(10) + 0(S9C10C11)(25) S(C7C(C4), (14) + S(C2C5C9), (11) + S(C4C1C2)(22)
500	480	504W	503W	0(C/C6C4)-(14) + 0(C5C5C8)-(11) + 0(C4C1C5)(55)
497	4/8		477W	$\tau(C13C13C14C7)(10) + \tau(C13C14C7C6)(11) + \tau(S9C10C11C12)(17) + \tau(S13C15C16C14)(39)$
490	470			$\tau(S9C10C11C12)-(46) + \tau(S13C15C16C14)-(11) + \gamma(C5C12S9C8)-(14)$
391	375		397vw	$\delta(C7C6C4)-(10) + \delta(C3C5C8)(12) + \delta(C14C7C6)-(18) + \delta(C5C8S9)(16)$
316	303		314vw	$\tau(C16C14C7C6)(33) + \tau(C7C6C4C1)-(22) + \tau(S13C15C16C14)-(17)$
302	290			$\tau(C10C11C12C8)-(18) + \tau(C1C3C5C8)(28) + \tau(S9C10C11C12)-(20) + \gamma(C5C12S9C8)(13)$
273	263		264vw	$\delta(O2C1C4)-(18) + \delta(C6C4C1)-(19) + \delta(C5C8S9)-(10) + \delta(C1C3C5)(25)$
219	210			$\delta(C14C7C6)(25) + \delta(C5C8S9)(26) + \delta(C4C1C3)(22)$
204	196	197vw	191vw	$\tau(C6C4C1C3)-(32) + \tau(C4C1C3C5)-(34)$
182	174			$v(C1C3)(10) + \delta(C3C5C8)(12) + \delta(C6C4C1)(19)$
123	118			$\tau(C6C4C1C3)(13) + \tau(C14C7C6C4)-(11) + \tau(C16C14C7C6)(14) +$
				τ (C4C1C3C5)-(17) + γ (C5C12S9C8)(23)
103	99			$\delta(C7C6C4)-(23) + \delta(C3C5C8)(18) + \delta(C14C7C6)(18) + \delta(C5C8S9)-(18) + \delta(C5C$
02	00	71		$\delta(C1C3C5)-(12)$
92	88	/1W		$\tau(U10U14U/U0)(22) + \tau(U/U0U4U1)(21) + \tau(U1U3U5U8)(22) + \gamma(U5U12S9C8) - (23)$
86	82			(25) $\tau(C3C5C8C12)(15) + \tau(C14C7C6C4)(21) + \tau(C7C6C4C1)(23) + \tau(C1C3C5C8)$
00	02			(19)
39	38			$\delta(C7C6C4)(18) + \delta(C3C5C8)(15) + \delta(C6C4C1) - (18) + \delta(C1C3C5) - (17) +$
				δ(C4C1C3)(19)
28	27			$\tau(C3C5C8C12)(14) + \tau(C6C4C1C3)(34) + \tau(C14C7C6C4)(36) +$
•				τ(C1C3C5C8)(10)
23	22			$\tau(C3C5C8C12)(31) + \tau(C6C4C1C3) - (11) + \tau(C4C1C3C5)(42)$

Abreviation: v, stretching; δ , bending; τ , torsion; γ , out-of-plane; vw, very weak; w, weak; m, medium; s, strong; vs, very strong.

Table S3. Calculated vibrational wavenumbers (in cm⁻¹) unscaled and scaled by the scale factor 0.9600 (ω <2000) and 0.942 (ω ≥2000), experimental Raman and infrared bands positions in units of cm⁻¹ and assignment of vibrational modes for DB thiophene C2.

Wcalc	Wscal	(WRaman	Wir	Assignment of the molecular vibrations with PED $(\%)$
3269	3079	3088vw	3088w	v(C15H25)(94)
3269	3079	3074vw	3071w	v(C10H21)(94)
3235	3047			v(C11H22)(55) + v(C12H23)(28)
3235	3047		3044vw	v(C14H24)(29) + v(C16H26)(55)
3220	3033			v(C11H22)-(29) + v(C12H23)(62)
3220	3033	3012vw	3013vw	v(C14H24)(62) + v(C16H26)-(30)
3180	2995			v(C3H17)(45) + v(C4H18)(44)
3173	2989			v(C3H17)(16) + v(C4H18)-(15) + v(C5H19)-(32) + v(C6H20)(37)
3171	2987	2990vw		v(C5H19)(47) + v(C6H20)(42)
3168	2985			v(C3H17)-(34) + v(C4H18)(34) + v(C5H19)-(16) + v(C6H20)(15)
1744	1674	1658w	1662s	v(O2C1)(52) + v(C4C6) - (12) + v(C5C3) - (12)
1669	1602	1604m	1602vs	v(C4C6)-(29) + v(C5C3)(29)
1642	1576	1567vs	1562vs	v(O2C1)-(34) + v(C4C6)-(19) + v(C5C3)-(19)
1579	1516			$\nu(C10C11)-(11) + \nu(C15C16)(10) + \nu(C7C14)-(18) + \nu(C12C8)(20)$
1576	1513	1512w	1512s	v(C10C11)-(11) + v(C15C16)-(12) + v(C7C14)(19) + v(C12C8)(18)
1487	1427	1425s		v(C10C11)-(20) + v(C15C16)(20)
1484	1424	1420vs	1419s	v(C10C11)-(19) + v(C15C16)-(19)
1416	1360	1376vw	1376w	v(C11C12)(11) + v(C16C14)-(10)
1404	1348	1359w	1359w	$\delta(H21C10S9)-(11) + \delta(H25C15S13)-(11)$
1354	1299		1319w	$v(C4C6)(10) + \delta(H17C3C5)(23) + \delta(H18C4C6)(24) + \delta(H19C5C8)-(10) $
				δ(H20C6C7)-(10)
1348	1294	1309w	1307w	$\delta(H17C3C5)-(18) + \delta(H18C4C6)(18)$
1318	1265			$\delta(H19C5C8)-(25) + \delta(H20C6C7)(24)$
1308	1256	1271w	1270w	$\delta(H19C5C8)-(14) + \delta(H20C6C7)-(14)$
1256	1205			$v(C6C7)(15) + v(C8C5)-(13) + \delta(C7C14C16)-(11)$
1253	1203	1225vw	1224w	v(C6C7)(18) + v(C8C5)(20)
1236	1186	1199w	1199w	$\delta(H23C12C11)(16) + \delta(H24C14C16)-(16)$
1234	1184		1169w	$\delta(H23C12C11)(14) + \delta(H24C14C16)(14)$
1124	1079	1095w	1106w	$\begin{split} &v(C1C4)(11) + v(C3C1) - (11) + \delta(H21C10S9)(13) + \delta(H22C11C12)(11) + \\ &\delta(H25C15S13) - (12) + \delta(H26C16C15)(11) \end{split}$
1118	1073	1088w	1095w	$ \begin{aligned} &v(C10C11)(10) + v(C15C16)(10) + \delta(H21C10S9) - (24) + \delta(H22C11C12) - (13) \\ &+ \delta(H25C15S13) - (24) + \delta(H26C16C15)(14) \end{aligned} $
1109	1065			$v(C1C4)(13) + v(C3C1) - (13) + \delta(H21C10S9) - (12) + \delta(H25C15S13)(12)$
1079	1036	1047w	1045w	$v(C11C12)(20) + v(C16C14)(21) + \delta(H23C12C11)(15) + \delta(H24C14C16)(16)$
1075	1032	1041w	1038w	$v(C11C12)(18) + v(C16C14) - (17) + \delta(H23C12C11)(16) + \delta(H24C14C16) - (15)$
1024	983		0.67	$\tau(H19C5C8C12)-(38) + \tau(H20C6C7C14)(38)$
1016	975	0.62	96/w	$\tau(H19C5C8C12)-(39) + \tau(H20C6C/C14)-(39)$
984	944	963w	959w	v(C1C4)(26) + v(C3C1)(26)
919	883		8/3w	$\tau(H22C11C12C8)(21) + \tau(H23C12C11C10)(10) + \tau(H24C14C16C15)(11) + \tau(H26C16C15S13)(25)$
919	882		956	τ (H22C11C12C8)(25) + τ (H23C12C11C10)(11) + τ (H24C14C16C15)(10) + τ (H26C16C15S13)-(25) -(U12C25C98)(23) + τ (U18C4CCC7)(20) + τ (O2C2C4C1)(14)
904	808		830W	$t(H1/C3C3C4)-(30) + t(H18C4C0C7)(30) + \gamma(02C3C4C1)-(14)$
872	837		830W	v(S9C10)(15) + v(S13C15) + (15) + 0(C10C11C12)(15) + 0(C15C16C14) + (14)
867	832	015	014	v(59C10)-(18) + v(513C15)-(18) + o(C10C11C12)-(15) + o(C15C16C14)-(17)
802	828	815VW	814W	$\tau(H17C3C526)-(24) + \tau(H18C4C6C7)-(24) + \tau(H23C12C11C10)-(10) + \tau(H24C14C16C15)-(10) - \tau(H24C14C16C15)(28) + \tau(H24C14C14C16C15)(28)$
843	810	700		t(H25C12C11C10)-(28) + t(H24C14C10C15)(28)
828	795	/88VW		$\tau(H1/C3C12C11C10)-(20) + \tau(H18C4C6C7)(15) + \tau(H23C12C11C10)-(20) + \tau(H24C14C16C15)-(20)$
800	768			$\delta(O2C1C4)-(19) + \delta(C5C3C1)-(10) + \delta(C1C4C6)(10)$
755	725		727w	$v(S9C10)(23) + v(S13C15)(23) + \delta(C10C11C12)-(12) + \delta(C15C16C14)-(10)$
733	704	705vw	711w	$v(S9C10)(14) + v(S13C15)-(14) + \delta(C10C11C12)-(20) + \delta(C15C16C14)(19)$
718	690			$\tau(\text{H21C10S9C8})\text{-}(21) + \tau(\text{H25C15S13C7})(21) + \gamma(\text{O2C3C4C1})\text{-}(20)$
715	686			τ (H21C10S9C8)(35) + τ (H22C11C12C8)-(11) + τ (H25C15S13C7)(35) + τ (H26C16C15S13)(12)
708	680	680vw	681vw	$\tau(H21C10S9C8) - (14) + \tau(H25C15S13C7)(14) + \gamma(O2C3C4C1)(40)$
687	659		666vw	$\begin{split} &\delta(\text{C10C11C12})\text{-}(13) + \delta(\text{C15C16C14})\text{-}(13) + \delta(\text{S9C10C11})\text{-}(17) + \\ &\delta(\text{S13C15C16})\text{-}(18) \end{split}$

663	636			$\delta(\text{S9C10C11})$ -(33) + $\delta(\text{S13C15C16})(32)$
619	594		579w	$\delta(C11C12C8)-(11) + \delta(S9C10C11)(13) + \delta(S13C15C16)(13)$
584	561		564w	$\tau(C10C11C12C8)(27) + \tau(C15C16C14C7)(32)$
579	556			$\delta(C7C14C16)-(13) + \delta(O2C1C4)(32) + \delta(C11C12C8)(15)$
579	556			$\tau(C10C11C12C8)(27) + \tau(C15C16C14C7)-(34)$
503	483	504vw	503w	$\delta(C8C5C3)-(12) + \delta(C4C6C7)-(12) + \delta(C3C1C4)(35)$
499	479		477w	τ (S9C10C11C12)(34) + τ (S13C15C16C14)(20) + γ (C6C14S13C7)(12)
492	473			τ (S9C10C11C12)-(32) + τ (S13C15C16C14)(20) + γ (C6C14S13C7)(13)
409	392		397vw	$\delta(C8C5C3)-(11) + \delta(C4C6C7)(11) + \delta(C12C8C5)-(17) + \delta(C6C7S13)-(12)$
319	306		314vw	τ (C11C12C8C5)(17) + τ (C8C5C3C1)-(11) + τ (C1C4C6C7)(11) +
				τ (S9C10C11C12)-(10) + τ (S13C15C16C14)(15)
313	300			$\tau(C11C12C8C5)(19) + \tau(C8C5C3C1)-(13) + \tau(C1C4C6C7)-(13) +$
				$\tau(\text{S9C10C11C12}) - (10) + \tau(\text{S13C15C16C14}) - (15) + \gamma(\text{C6C14S13C7})(10)$
264	253		264vw	$\delta(O2C1C4)(19) + \delta(C5C3C1) - (24) + \delta(C1C4C6)(24)$
237	228			$\delta(C12C8C5)(20) + \delta(C6C7S13) - (17) + \delta(C3C1C4)(27)$
209	201	197vw	191vw	$\tau(C5C3C1C4)(30) + \tau(C3C1C4C6)(30)$
174	167			$\delta(C5C3C1)-(14) + \delta(C6C7S13)-(10) + \delta(C1C4C6)-(14)$
122	117			$\tau(C4C6C7C14)(15) + \tau(C5C3C1C4)(14) + \tau(C12C8C5C3)-(15) +$
				τ (C11C12C8C5)(14) + τ (C3C1C4C6)-(14) + γ (C6C14S13C7)-(11)
102	98			$\delta(C8C5C3)-(21) + \delta(C4C6C7)(21) + \delta(C12C8C5)(18) + \delta(C6C7S13)(19)$
93	90			$\tau(C4C6C7C14)(15) + \tau(C12C8C5C3)-(15) + \tau(C8C5C3C1)-(21) +$
				$\tau(C1C4C6C7)(21)$
91	87	71w		$\tau(C11C12C8C5)(21) + \tau(C8C5C3C1)(22) + \tau(C1C4C6C7)(22) +$
• •				γ(C6C14S13C7)(20)
38	36			$\delta(C8C5C3)-(17) + \delta(C4C6C7)-(17) + \delta(C5C3C1)(16) + \delta(C1C4C6)(17) + \delta(C1C4C6)($
20	20			$\delta(C3C1C4)$ -(19)
29	28			$\tau(C4C6C/C14)(30) + \tau(C5C3C1C4)(15) + \tau(C12C8C5C3)(29) + \tau(C3C1C4C6)(16)$
25	24			$\pi(C4C6C7C14)_{-}(11) \pm \pi(C5C3C1C4)(31) \pm \pi(C12C8C5C3)(12) \pm$
20	2-7			$\tau(C3C1C4C6)-(30)$
				-(

Abreviation: v, stretching; δ , bending; τ , torsion; γ , out-of-plane; vw, very weak; w, weak; m, medium; s, strong; vs, very strong.

Figure S1. Chromatogram of DB thiophene.

Figure S3. Raman spectra of DB thiophene higher than 2000 cm⁻¹.

Scheme S1. Proposed fragmentation of DB thiophene.

CAPÍTULO 3

Full Spectroscopic Characterization and Cytotoxicity Activity of Synthetic Dibenzalacetone Derivatives.

Mauro M. de Oliveira^{a*}, Carlos E.S. Nogueira^{a,e}, Francisco Wagner Q. Almeida-Neto^f, Helcio S. Santos^{a,b}, Alexandre M. R. Teixeira^{a,e}, Pedro de Lima-Neto^f, Emmanuel S. Marinho^g, Manoel O. de Moraes^c, Claudia Pessoa^c, Francisco Washington A. Barros-Nepomuceno^d.

^a Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil

^b Science and Technology Centre - Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil

^c Center for Research and Drug Development, Federal University of Ceará, Fortaleza, CE, Brazil

^d Institute of Health Sciences, University of International Integration of the Afro-Brazilian Lusophony, Acarape, CE, Brazil

^e Department of physics, Regional University of Cariri, Crato, CE, Brazil

^f Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Fortaleza, CE , Brazil.

^g State University of Ceará, Faculty of Philosophy Dom Aureliano Matos, Limoeiro do Norte, CE, Brazil.

*Corresponding author. Department of Biological Chemistry, Regional University of

E-mail addresses: mauropandi@gmail.com

Cariri, Campus Pimenta II, CEP: 63.100-000, Crato, CE, Brazil.

Abstract

Dibenzalacetone derivatives are organic compounds formed by two α , α' active sites that provide a large relocation of π -electrons. They have great polarizability that make them excellent chromophore and draw attention for their biological properties, mainly for their activity against nasopharyngeal, oral, colon, prostate and cervical cancer. Two dibenzalacetone derivatives, (1*E*,4*E*)-1,5-bis(4-ethoxyphenyl)penta-1,4-dien-3-one and (1*E*,4*E*)-1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one, were synthesized. Spectroscopic characterizations as well as vibrational assignments were predicted using density Functional Theory (DFT) calculations with B3LYP exchange-correlation functional. Cytotoxicity assays of the synthesized compounds were performed against HCT-116, SNB and PC3 cells, showing promising results against cancer cells HCT-116.

Keywords: Dibenzalacetone derivatives; Cytotoxicity; DFT; Spectroscopy, Cancer cells.

1. Introduction

A double condensation reaction of a ketone that has two α , α' - active sites with two equivalents of aromatic aldehyde yields a molecule with an extensive delocalization of π -electrons, which favors an easier polarizability, that is achieved by the presence of strong electron donor (D) and strong acceptor (A) groups with a π -electron bridge joining D and A. These compounds are closely related to the class of organic chromophores known as "bis-chalcones" which have several multifunctional characteristics (pharmacological and biological activities)[1]. In literature, dibenzalacetone derivatives as the ones reported here, are sometimes referred to as bis-chalcones[2–4] or simply chalcone derivatives[5].

Chalcones are a class of naturally occurring or readily synthesized compounds that have a 1,3-diaryl-2-propen-1-one basic framework. They are an open-chair precursor of flavonoids and may exists as *trans* and *cis* isomers, although the *trans* isomer is thermodynamically more stable. Natural chalcones are commonly found in fruits, vegetables, petals, bark, leaves and roots of various trees or plants[6–9]. The chalcone class and its derivatives have attracted a lot of interest, as they have a wide range of bioactivities, *e.g.*: anti-inflammatory[10], antimicrobial[11], anti-oxidant[12], anticancer[13], antifungal[14], antimalarial[15], anti-protozoal[16], *etc*. This broad spectrum of biological activity is probably related to its small structure and its characteristics as Michael acceptors, which make them tolerant to different biological molecules and allow them to bind quickly or reactively to them[9].

Several bis-chalcones have shown remarkable anticancer activity against nasopharyngeal, oral, colon, prostate and cervical cancer[13,17]. In a recent study, nine bis-chalcones were tested in vitro for cytotoxic activity against cancer cell lines of lung (A549), prostate (DU-145), nasopharyngea carcinoma (KB) and vincristine-resistant KB subline (KB-VIN). Best results were obtained in non-substituted phenyl B rings or in *para*-methoxyphenyl B-rings[18]. Other bis-chalcones with methoxy groups inserted at *para* position of phenyl rings have displayed encouraging results by inhibiting tumor-initiating cells in the brain[19]. Lima and collaborators obtained significant antiproliferative effects against SF-295 (central nervous system), HCT-116 (colon cancer) and OVCAR-8 (breast cancer) cell lines using halogenated and nitro bis-chalcone *ortho/para* substituted[20]. Furthermore, heterocyclic rings have exhibited more

cytotoxic potential, especially thiophene-chalcones derivatives. They are known as central structures in the design of new scaffolds with potential pharmacological interest. *Duddukuri* et al. for example synthetized a thiophene-chalcone also containing a *para*-chlorine phenyl ring that inhibited the growth of A549 cell line by inducing apoptosis[21]. Enone bearing enamines derivatives also seem to display anticancer activity[22].

Thus, due to the above, we were motivated to synthesize two dibenzalacetone derivatives, (1E,4E)-1,5-bis(4-ethoxyphenyl)penta-1,4-dien-3-one and (1E,4E)-1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one, hereinafter referred to DB ethoxy and DB chlorine, respectively. We conducted a cytotoxicity assay in three human cancer cell line as well as a druglikeness test. In addition, these compounds were fully characterized by NMR, Raman, IR and mass spectroscopies, and all quantum chemical calculations were performed using the Density Functional Theory (DFT) approach. The comparison of the normal modes obtained by theoretical calculations with the experimental spectra allowed us to assign all the normal modes of these molecules. Although these compounds are known and already have their crystal structures solved[23,24], there is not, as far as we know, a complete IR and Raman vibrational spectroscopy characterization or cytotoxic evaluation studies against the strains mentioned.

2. Materials and Methods

2.1. Materials

The reagents 4-ethoxybenzaldehyde, 4-chlorobenzaldehyde, Dimethyl sulfoxide (DMSO), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and RPMI-1640 Medium were purchased from Sigma-Aldrich Inc. Etanol, Isopropanol and acetone were obtained from Vetec Química Fina Ltd., and potassium hidroxide (KOH) and hydrochloric acid (HCl) from Dinâmica Química Contemporânea Ltd. Fetal Bovine Serum (FBS) and Phosphate Buffered Saline (PBS) were from GibcoTM. All materials were analytical grade.

2.2. Synthesis

DB ethoxy and DB chlorine were obtained by controlled addition of 7mL of 4ethoxybenzaldehyde:acetone (5:2) and 4-chlorobenzaldehyde:acetona (5:2), respectively, in a mixture of 50mL KOH 10%(w/v) and 40mL of ethanol. These reactions were kept under mechanical stirring at the temperature of 0°C. After 30 minutes the mixtures were filtered and the precipitates washed with distilled water. Then the compounds were recrystallized using ethanol as solvent. The syntheses were based on Claisen-Schmidt condensation[25,26]. Scheme 1 shows the compounds synthesis reaction.

Scheme 1. DB ethoxy and DB chlorine synthesis reaction.

2.3. Vibrational Spectroscopy

The Raman scattering measurements of DB ethoxy and DB chlorine were recorded in powder form in the wavenumber range from 40 to 4000cm⁻¹ on a Bruker RAM II FT-Raman module coupled to the VERTEX FT-IR spectrometer as well as a liquid nitrogen cooled high-sensitivity Ge detector. The light output (1064 nm) on Nd:YAG laser was used to excite the sample. The resolution of ~ 4 cm⁻¹ with accumulation of 60 scans per spectra and a nominal laser power of 150 mW were used.

FTIR spectra of the compounds were recorded in the region of 600 to 4000 cm⁻¹ due to Attenuated Total Reflectance (ATR) accessory working with a germanium (Ge) crystal with a resolution of 4 cm⁻¹ and accumulating 32 scans per spectrum. The module used was an Agilent Cary 660 FTIR spectrometer. The mesures were made in the room temperature.

2.4. NMR and CG/MS

NMR experiments were performed on a Bruker Avance DRX-500 spectrometer (¹H 500 MHz, ¹³C 125 MHz) equipped with a 5mm inverse detection z-gradient probe. ¹H and ¹³C NMR spectra were measured at 27°C using CDCl₃ as the solvent.

Tetramethylsilane (δ 0.00) was used as the internal standard. The GC/MS analyses were conducted on an Agilent instrument model GC-7890B/MSD-5977A with a quadrupole mass analyzer of electron impact at 70 eV and a RTX5-MS (30 m × 0.25 mm × 0.25 um) capillary column. The mass spectrometer was adjusted for acquisition in the range of 40–660 m/z. The injector temperature was kept constant at 230 °C with a helium flow rate of 1.00 mL min⁻¹ (carrier gas). The temperatures of the source and transfer lines were set at 230 °C and 280 °C, respectively. The following program was used in the chromatographic oven: initial temperature of 40 °C, with a heating ramp from 3 °C min⁻¹ to 280 °C for 5 min at the end of the run.

2.5. Computational details

The quantum calculations were performed at the Gaussian 09 package[27] using Density Functional Theory[28] to optimize geometry with B3LYP exchange-correlation functional[29] and 6-31G(d,p) basis set in the gas phase. Initial coordinates were generated according to the NMR results. Harmonic vibrational frequencies were dual scaled as proposed by Halls et al. [30]. Two scaling factors were obtained by mean least squares for each model in the regions above and below 1800cm⁻¹. The scaling factors for DB chlorine, DB ethoxy, DB ethoxy monohydrated and DB ethoxy trihydrated models were 0.9712 and 0.9476, 0.9716 and 0.9449, 0.9702 and 0.9440, 0.9694 and 0.9430 respectively (Figure S16). All of these values are in agreement with NIST - Standard Reference Database[31]. The fundamental normal modes were assigned and the Potential energy distribution (PED) calculations were carried out by VEDA (Vibrational Energy Distribution Analysis) with default optimization options[32]. Next, the ¹H and ¹³C NMR calculations were done using the GIAO method[33-36] available in Gaussian 09[27] at B3LYP/6-311++G(d,p) level of theory with chloroform as an implic solvent to compute the magnetic isotopic shielding for the hydrogen (σ_H) and carbon (σ_C) atoms. To determine the theoretical chemical shift for the hydrogen (δ_H) and for the carbon (δ_C) atoms, the tetramethylsilane (TMS) reference molecule was optimized at B3LYP/6-311++G(d,p) level of theory and the NMR magnetic isotopic shielding for the hydrogen $(\sigma_{H(TMS)})$ and carbon $(\sigma_{C(TMS)})$ atoms were determinated at the same level of theory. Hence, the theoretical chemical shift were calculated using the relations as follows: $\delta_H =$ $\sigma_{H(TMS)} - \sigma_H$ and $\delta_C = \sigma_{C(TMS)} - \sigma_C$.

The three human cancer cell lines used in cytotoxicity assay were: HCT-116 (colon carcinoma), SNB (glioblastoma) and PC3(prostate). They were provided by National Cancer Institute (USA). The cells were grown in RPMI 1640 medium supplemented with 10% FBS and 1% antibiotics, in 5% CO₂ atmosphere at 37°C.

2.7. Cytotoxicity assay

The dibenzalacetone derivatives were initially dissoved in DMSO with a concentration of 2mM, maintained at -20°C until use. The Cytotoxicity of the samples were avaluated by Colorimetric MTT assay[37]. MTT was dissolved in PBS at 5 mg/mL and filtered to sterilize and remove a small amount of insoluble residue present in some batches of MTT. Before the test itself, a calibration curve was prepared with cells plated in 96-well travs in double dilutions starting with 10^5 cells/well. MTT solution stock (0.01mL) was added to all wells and the plate was incubated at 37°C for 3 h. Acid isopropanol (0.1mL of HCl 0.04 M in isopropanol) was added to each well and mixed. After a few minutes at room temperature to ensure dissolution of all dark blue crystals, optical density (absorbance) was read at wavelength of 595 nm. Regression calculations were fulfilled with all points in triplicate in order to obtain the best line that represents the direct proprorcionalide that exists between the number of living cells and the absorbance of the medium. For the cytotoxicity assay 0.1mL of neoplastic cells growth medium were plated in a 96-well tray (0.7×10^5 cells/mL) and then the compounds were added after 24 hours with a final concentration of 10µM. The plates were then incubated at 37°C in 5% CO₂ atmosphere. The colorimetric MTT procedure was performed after 72 hours, the optical density was recordered at the same wavelength and the reduction in cell viability was calculated with the aid of the calibration curve. Doxorubicin (Dox, 1 µM) was used as the positive control.

2.8. Statistical analysis

Each compound was tested in triplicate from two independent experiments and the results were expressed as reduction in cell viability (% RCV) \pm standard error of the mean (SEM). Statistical hypothesis analysis was applied using a Two-Way ANOVA followed by the Bonferroni post hoc test using the GraphPad Prism 5.0[38].

2.9. In silico drug-likeness evaluation

In order to predict the potential of said compounds to become a medicine, we driven an in silico evaluation of physicochemical properties, pharmacokinetics, drug-likeness and medicinal chemistry friendliness tests on SwissADME[39], a free-on-line platform that gives free access to a pool of predictive models.

3. Results and Discussion

3.1. Structural and Conformational Analysis

NMR spectral data for DB ethoxy and DB chlorine are shown in Table 1 and the ¹H NMR (CDCl₃, 300MHz) and ¹³C NMR (CDCl₃, 125MHz) spectra are presented in the Supplementary Material on figures ranging from S1 to S8. In the ¹H NMR spectrum, it is possible to observe a couple of doublets for both dibenzalacetone derivatives. At 6.94 (d, J = 15.3 Hz) and 7.69 ppm (d, J = 15.8 Hz) for DB ethoxy and 7.04 (d, J = 8.0 Hz) and 7.69 ppm (d, J = 15.9 Hz) for DB chlorine. These signals are attributed to the unsaturated olefinic carbon hydrogens, assigned as H29/H30/H31/H32 and H25/H26/H27/H28 respectively. Their coupling constants confirm the stereochemistry E of the double bonds. The aromatic hydrogens of DB ethoxy H25/H26/H34/H35 and H27/H28/H33/H36 are ascribed to the signals at 7.54 (d, J = 8.6 Hz) and 6.89 ppm (s). In DB chlorine, the signals related to these sorts of hydrogens, here numbered as H23/H24/H29/H32 and H21/H22/H30/H31, are at 7.40 (d, J = 8.0 Hz) and 7.55 ppm (d, J = 8.0 Hz). The dibenzalacetone derivative DB ethoxy has also two additional signals, at 4.05 (q, J = 6.9Hz) and 1.42 ppm (t, J = 6.9 Hz) that reveal the hydrogens of the ethoxy groups. The ¹³C NMR spectra displayed peaks in both compounds at 188.9 and 188.3 ppm respectively, that were related to unsaturated carbonyl group (C9). These peaks should be seen at 203.8 ppm. The presence of α , β unsaturation causes a displacement to high field and the probable cause is the displacement of charge by the benzene ring or by the double bond that makes carbonyl carbon less electron deficient. The olefinic carbons are observed at 127.5 and 142.8 ppm for DB ethoxy and 125.7 and 142.0 ppm for DB chlorine, here named C8/C10 and C7/C11, while the aromatic ones appear at 161.1, 130.2, 123.5 and 115.0 ppm, and 136.5, 133.2, 129.5 and 129.3 ppm for DB ethoxy and DB chlorine respectively. The 63.7 and 14.9 ppm signals in the ¹³C NMR spectrum of DB ethoxy were ascribed to ethoxy carbons. The indicative numbering of the carbons can be seen in Table 1.

The results of the quantum chemical calculations for the theoretical chemical shift for the DB ethoxy and the DB chlorine molecules are also shown in Table 1. To compare the experimental results of the NMR spectroscopic data with the theoretical chemical shift computed at B3LYP/6-311++G(d,p) computational level, a linear fitting was made and the results are shown in the Figure 1. The DB ethoxy molecule showed a coefficient of determination (R-squared) of 0.98835 with the linear equation y = 1.04802x + 0.77567and the DB chlorine molecule exhibited a R-squared of 0.99745 and the linear equation y = 1.05799x + 0.27575. Therefore, the excellent agreement between the experimental and the theoretical data confirms the proposed structures for the title dibenzalacetone derivatives.

Table 1. NMR spectroscopic experimental and theoretical data for DB ethoxy and DB chlorine (¹H: 300MHz;¹³C: 125 MHz; in CDCl₃).

Molecular structure	С	δc	δн	δC(Theo)	δH(Theo)
	C5/12	130.20		134.58	
	C4/17	115.00	6.89 (s)	133.66	8.21
18 O	C6/13	115.00	6.89 (s)	143.66	7.67
13 12 7 6	C1/14	123.50	7.54 (d, <i>J</i> = 8.6 <i>Hz</i>)	115.63	6.91
14 10 9 8 1 1	C3/16	123.50	7.54 (d, <i>J</i> = 8.6 <i>Hz</i>)	124.95	7.25
H_2CH_2CO H_1T H_2CH_2CO H_1T H_2CH_2CO $H_2CH_2CH_2$	C2/15	161.10		171.25	
19 3 20 3 20 15 3 20 16 16 16 16 16 16 16 16 16 16 16 16 16	C8/10	127.50	6.94 (d, <i>J</i> = 15.3 Hz)	128.96	7.08
	C7/11	142.80	7.69 (d, <i>J</i> = 15.8 <i>Hz</i>)	152.18	8.07
	C9	188.90		193.00	
	C21/23	63.70	4.05 (q, $J = 6.9 Hz$)	69.06	4.04
	C22/24	14.90	1.42 (t, $J = 6.9 Hz$)	17.19	1.52
	C5/12	133.20		140.89	
18 O	C4/13	129.30	7.40 (d, $J = 8.0 Hz$)	133.15	8.24
17 12 12 12 7 6	C6/17	129.30	7.40 (d, $J = 8.0 Hz$)	142.54	7.70
	C1/16	129.50	7.55 (d, $J = 8.0 Hz$)	136.48	7.64
	C3/14	129.50	7.55 (d, $J = 8.0 Hz$)	136.07	7.65
$\begin{array}{c} CI & 14 \\ 19 & 3 & 20 \end{array}$	C2/15	136.50		153.69	
	C8/10	125.70	7.04 (d, <i>J</i> = 15.9 <i>Hz</i>)	131.75	7.30
	C7/11	142.00	7.69 (d, <i>J</i> = 15.9 <i>Hz</i>)	152.10	8.13
	C9	188.30		193.42	

Figure 1. Linear fitting for the NMR spectroscopic experimental and theoretical data for the (a) DB ethoxy and (b) DB chlorine molecules.

The structures of the synthesized compounds were also confirmed through the analysis of the mass spectra in a fragmentation proposal, whose ions formed come from an α segmentation. The mass spectra revealed peaks of the M⁺ molecular ion of the synthesized compounds DB ethoxy (m/z = 322) and DB chlorine (m/z = 303), in addition to the base peak characteristic of the general process of fragmentation of the compounds (Schemes 2 and 3).

Scheme 2. Proposed fragmentation of dibenzalacetone derivative DB ethoxy.

Scheme 3. Proposed fragmentation of dibenzalacetone derivative DB chlorine.

3.2. Vibrational Analysis

As evidenced by the structural NMR determination, DB ethoxy and DB chlorine have 46 and 32 atoms respectively. Therefore, they have 132 and 90 theoretical vibrational modes. The experimental IR and Raman spectra of both compounds are presented in Figures 2a and 2b. Concerning IR spectra, we initially noted that DB ethoxy exhibited a very wide band at 3300 cm⁻¹, that is: DB ethoxy might have precipitated in hydrated crystal form. The sample was heated and the dehydrated infrared spectrum of the compound, shown in Figure S9, confirmed the disappearance of broadband related to hydration water without any change to the other modes. Other aspect that is worth mentioning is a weak signal of around 1.6 ppm in the ¹H NMR spectrum (Figure S1) which denotes a water signal in the CDCl₃ solvent. Thus, we developed three models for DB ethoxy to assist in spectroscopic band assignments. An anhydrous model, with an isolated molecule, a monohydrated one, consisting of a water molecule positioned close to the carbonyl group, and finally, a trihydrate model with three molecules of water placed next to carbonyl and ethoxy groups. The calculated Raman of said models and DB ethoxy were compared (Figures S10 and S12) and we found that the shape of the experimental spectrum in the region between 1500 cm⁻¹ and 1700 cm⁻¹ is much more similar to the mono and trihydrated models than to the anhydrous, especially in relation to the experimental modes 1569, 1585, 1603 and 1620 cm⁻¹. The experimental modes 578, 566 and 554 cm⁻¹, could not be assigned over the calculated spectrum for the anhydrous and monohydrate models since it is related to the bending mode of the water molecule and the oxygen atom of the ethoxy group. In addition, modes 279 and 300cm⁻¹ could not be justified in the anhydrous model since these vibrational modes are related to the torsion of the water molecule with the oxygen atoms of the ethoxy groups in the trihydrated model and the bending of the water molecule and the oxygen atom of the carbonyl group in the monohydrate model. Therefore, the Raman profile for trihydrated model captured much more the features of experimental data. This does not mean, however, that we are proposing a crystal with three water molecules per unit cell, since depending on the organization of the crystal, the same water molecule can influence more than one molecule of DB ethoxy.

Figure 2. Experimetal IR (a) and Raman (b) spectra of DB ethoxy and DB chlorine.

DB chlorine spectrum proved to be quite compatible with the theoretical model proposed. All tables containing the PED analysis of the three DB ethoxy and DB chlorine models as well as the comparison of the Raman and IR models along with experimental spectrum are provided in Supplementary Material (Tables S1 - S4).

Tables 2 and 3 summarize all the assignments of the Raman and IR experimental modes with the calculated values (scaled) of the trihydrated model of DB ethoxy and DB chlorine, respectively. The optimized structures (in vacuum) with the nomeclature used in the PED analysis of the dibenzalacetone derivative DB ethoxy trihydrated model and DB chlorine are exposed in Figures 3a and 3b.

Table 2. Observed Raman and IR band positions (cm⁻¹), calculated (scaled) vibrational wavenumbers (cm⁻¹) and assignments for the DB ethoxy trihydrated model.

WRaman	ωir	Wscal	Assignment
3063		3045	v(CH) _{ring}
	3037	3044	v(CH) _{ring}
3034		3026	v(CH) _{ring}
3012		3013	v(CH) _{ring}
2977	2985	2980	v(CH)enone
	2976	2962	v(CH) _{ethoxy}
2936	2935	2957	v(CH) _{ethoxy}
	2885	2885	v(CH) _{ethoxy}
2881		2885	v(CH) _{ethoxy}
2862		2850	v(CH) _{ethoxy}
1643	1640	1650	$\delta(OH_{water}O_{carbonyl}) + \tau(OH_{water}OC_{carbonyl}) + \tau(H_{water}OC_{carbonyl}C_{enone})$
	1620	1627	δ(HOH) _{water}
1620		1615	$\nu(CC)_{ring}$
1603	1601	1604	$\nu(CC)_{ring}$
1584	1583	1578	$\nu(CO)_{carbonyl}$
1569	1568	1566	$\nu(CC)_{ring}$
1556		1564	$\nu(CC)_{ring}$
1515	1510	1512	$\delta(\text{HCC})_{\text{ring}} + \delta(\text{HCH})_{\text{ethoxy}}$
1497		1489	$\delta(\text{HCH})_{\text{ethoxy}}$
	1477	1488	$\delta(\text{HCH})_{\text{ethoxy}}$
1475	1469	1466	$\delta(\text{HCH})_{\text{ethoxy}} + \tau(\text{HCCO})_{\text{ethoxy}}$
1459		1455	$\delta(\text{HCH})_{\text{ethoxy}} + \tau(\text{HCCO})_{\text{ethoxy}}$
1425	1425	1428	$\nu(CC)_{ring} + \delta(HCC)_{ring}$
1396	1396	1398	$\delta(\text{HCH})_{\text{ethoxy}} + \tau(\text{HCOC})_{\text{ethoxy}}$
1351	1348	1357	$\delta(\text{HCC})_{\text{enone}}$
1325	1333	1337	$\nu(CC)_{enone} + \nu(CC)_{ring} + \delta(HCC)_{enone} + \delta(HC_{enone}C_{ring})$
1311		1321	$\delta(HC_{enone}C_{carbonyl})$
	1308	1313	$\delta(HC_{enone}C_{ring}) + \delta(HCC)_{ring}$
1295		1308	$\delta(\text{HCC})_{\text{ring}} + \delta(\text{HC}_{\text{enone}}C_{\text{carbonyl}})$
	1292	1289	$\delta(\text{HCC})_{\text{enone}} + \delta(\text{HC}_{\text{enone}}\text{C}_{\text{ring}})$
1272		1273	$\nu(C_{ring}C_{enone}) + \delta(HC_{enone}C_{carbonyl})$
1251	1252	1247	$\nu(CC)_{ring} + \nu(O_{ethoxy}C_{ring})$
1220	1219	1218	$\nu(CC)_{ring} + \nu(C_{enone}C_{ring}) + \delta(HCC)_{ring}$
1196	1190	1204	$\nu(CC)_{ring} + \nu(C_{ring}C_{enone}) + \delta(HC_{enone}C_{ring}) + \delta(HCC)_{ring}$
1176	1169	1176	$\delta(\text{HCC})_{\text{ring}}$
1158		1150	$\delta(\text{HCC})_{\text{ethoxy}} + \tau(\text{HCO}_{\text{ethoxy}}C_{\text{ring}})$
1127		1122	$\nu(CC)_{ring} + \delta(HCC)_{ring}$
1113	1115	1108	$\tau(\text{HCCO})_{\text{ethoxy}}$

1098	1097	1093	$\nu(C_{carbonyl}C_{enone}) + \delta(HC_{enone}C_{carbonyl}) + \delta(HCC)_{enone}$
1049		1052	$\tau(HO_{water}HC_{enone}) + \tau(HCC_{enone}C_{carbonyl}) + \tau(HC_{enone}C_{carbonyl}C_{enone})$
	1045	1038	$v(CC)_{ethoxy} + v(OC)_{ethoxy}$
	1025	1005	τ (HCenoneCcarbonylCenone) + τ (HCenoneCCring)
996	989	1000	$\delta(\text{CCC})_{\text{ring}}$
981		970	$v(CO)_{carbonyl} + v(C_{carbonyl}C_{enone})$
944		939	$\tau(\text{HCCC})_{\text{ring}} + \tau(\text{CCCC})_{\text{ring}}$
924		922	$\tau(\text{HCCC})_{\text{ring}} + \tau(\text{HCC}_{\text{ring}}O_{\text{ethoxy}}) + \tau(\text{CCCC})_{\text{ring}}$
909	922	912	$\nu(CC)_{ethoxy} + \nu(OC)_{ethoxy} + \tau(HCCO)_{ethoxy}$
878	881	881	$\tau(HC_{enone}C_{carbonvl}C_{enone}) + \gamma(O_{carbonvl}CC_{enone}C_{carbonvl})$
	835	844	τ(HCCC) _{ring}
857		839	δ(CCC) _{ring}
830		832	$\tau(\text{HCCC})_{\text{ring}} + \tau(\text{HC}_{\text{enone}}C_{\text{carbonyl}}C_{\text{enone}})$
813	812	818	τ(HCCO) _{ethoxy}
806	789	798	τ(HCCC) _{ring}
791		790	$\tau(\text{HCCC})_{\text{ring}} + \tau(\text{HCC}_{\text{ring}}C_{\text{enone}})$
776		766	v(OC)ethoxy
737		728	$\tau(CCCC)_{ring} + \gamma(O_{carbonyl}CC_{enone}C_{carbonyl})$
719		705	τ(CCCC) _{ring}
704		701	$\delta(OC_{carbonyl}C_{enone}) \pm \delta(CCC)_{ring}$
679		676	$\delta(OH_{water}OC_{carbonyl}) + \delta(H_{water}OC_{carbonyl}) + \tau(OH_{water}OC_{carbonyl})$
664	661	672	$\tau(CCCC)$ ring + $\gamma(O_{carbonyl}C_{carbonyl})$
638	638	634	$\delta(CCC)_{ring}$
625	000	632	$\delta(CCC)_{ring}$
593		581	$\delta(CCC)_{ring}$
578		563	$\delta(OH_{untrac}O_{ethornal}) + \delta(CO_{ethornal}H_{untrac})$
566		557	$\delta(OH_{water}O_{ethorsy}) + \delta(H_{water}O_{ethorsy}O_{ethorsy})$
554		553	$\delta(OH_{waterOethory}) + \delta(H_{waterOethory}Crime)$
539		518	$\delta(C_{\text{resc}}, C_{\text{resc}}, C_{\text{resc}})$
516		517	$\gamma(O_{\text{enone}} \subset \operatorname{carbonyl} \subset \operatorname{enone})$
/38		/33	$\delta(CC) = \delta(CC) + \delta(CC$
420		433	$\delta(O_{\text{end}}, C_{\text{end}})$ + $\delta(O_{\text{end}})$ + $\delta(O_{\text{end}})$ + $\delta(O_{\text{end}})$
420		422	$\tau(\text{HCCC}) + \tau(\text{CCCC})$
403		413	$\tau(\text{HCCC}) = \pm \tau(\text{CCCC}) + \tau(\text{CCCC} + \tau(\text{CCC}))$
384		378	$\tau(HO_{res}, HC_{res}) + \tau(CCCC) i_{res} + \gamma(O_{res}, CCC) i_{res}) + \gamma(C_{res}, CCC) i_{res})$
368		370	$\tau(CCCC) + \tau(CCC) + \tau(CC) $
353		372	$\delta(CCO)$, $\delta(CCO)$, $\delta(CCO)$, $\delta(CCO)$
320		326	$\delta(CCO) = \pm \tau(H + CC) + \tau(C)$
320		219	$\delta(\mathbf{CU}) = \frac{1}{2} \left(\frac{1}{2} \operatorname{H} \left(\frac{1}{2$
300		510	$\tau(H_{\text{materOCcarbonyl}}) + \tau(\Pi_{\text{waterIICenone}}) + \tau(\Pi_{\text{waterOCcarbonyl}}) + \tau(\Pi_{\text{waterOCcarbonyl}})$
279		266	$\delta(HO_{water}H_{enone})$
271		262	$v(\Omega_{carbonvl}H_{water}) + \delta(CC_{anona}C_{carbonvl})$
256		253	$\tau(HOH_{water}O_{ethoxy}) + \tau(OH_{water}O_{ethoxy}C_{ring}) + \tau(HCCO)_{ethoxy}$
249		251	$\tau(HOH_{water}O_{ethoxy}) + \tau(OH_{water}O_{ethoxy}C_{ring}) + \tau(HCCO)_{ethoxy}$
236		237	$\tau(HOH_{water}O_{ethoxy}) + \tau(CO_{ethoxy}HO_{water})$
217		216	$\tau(HOH_{water}O_{ethoxy}) + \tau(OH_{water}O_{ethoxy}C_{ring})$
204		203	$\tau(HOH_{water}O_{ethovy}) + \tau(OH_{water}O_{ethovy}C_{ring}) + \tau(CC_{enone}C_{earbonyl}C_{enone})$
184		186	Lattice
176		174	Lattice
153		159	Lattice
138		135	Lattice
122		127	Lattice
106		106	Lattice
103		99	Lattice
84		79	Lattice
65		66	Lattice
38		36	Lattice
20		50	

Abreviation: v, stretching; δ , bending; τ , torsion; γ , out-of-plane.

WRaman	WIR	Wscal	Assignment
3066	3050	3055	v(CH) _{ring}
3054	2000	3053	v(CH) _{ring}
3018		3026	v(CH)ring
1670	1668	1701	$v(CO)_{carbonvl} + v(CC)_{enone}$
1649	1649	1632	$v(CC)_{caroo} + v(CC)_{chore}$
1629	1626	1609	v(CO) contrast $v(CO)$ contrast
102)	1589	1598	v(CC) carbony $v(CC)$ enone
1590	1507	1593	$v(CO)_{\text{sol}} + v(CC)_{\text{int}}$
1566	1566	1566	v(CC) in $v(CC)$ in $v(CC)$ in $v(CC)$ in $v(CC)$
1490	1489	1489	δ(HCC) _{vinα}
1407	1406	1407	v(CC)ring
1342	1338	1334	$\delta(\text{HC}_{\text{superal}} C_{\text{superal}}) + \delta(\text{HCC})_{\text{superal}}$
1372	1327	1323	$\delta(\text{HCC})_{\text{ansach}} + \delta(\text{HC})_{\text{ansach}}$
1322	1527	1311	$\delta(HCenerg(astrong)) + \delta(HCC)$
1294		1292	$v(\Gamma C)$
1277		1292	
1277	1200	1292	S(HCC)
1259	1270	1265	$v(\Gamma \cup C_{\text{penone}}) + \delta(HC_{\text{penone}}) + \delta(HCC)$
1204	1188	1205	$\delta(\text{HCC})_{\text{resc}} + \delta(\text{HC}_{\text{resc}}, \text{C}_{\text{resc}})$
1180	1100	1108	$v(\Omega C) + v(C C) + v(C C) + v(\Omega C) + \delta(HCC) + \delta(HC C) + \delta(HC C)$
1109		1190	$\delta(\text{HC}_{\text{prone}} (\text{setensyl}))$
1176	1178	1173	$\delta(\text{HCC})_{\text{ring}}$
1104	1111	1105	v(CC)ring
1101	1103	1090	v(Capona Carbony)
1092	1105	1079	$\gamma(CC)$ ring
1072	1086	1069	$\gamma(Corona Corotanul)$
1013	1011	1013	$\tau(\text{HCC}_{anona} C_{arbonyl}) + \tau(\text{HC}_{anona} C_{ring})$
1015	1011	1005	$\tau(HCCanonaCosthonyl) + \tau(HCanonaCosthonylCanona) + \tau(HCanonaCCring)$
985	984	998	$\delta(CCC)_{rinc}$
970	204	959	v(Carona Carobanul)
950		941	τ (HCCC)ring + τ (CCCC)ring
924		935	τ(HCCC)-ing
888	887	888	$\tau(HCoronoCostonulCorono) + \tau(HCCoronoCrine) + \gamma(OostonulCCoronoCostonul)$
866	866	853	$\delta(CCC)_{ring}$
859	000	850	$\tau(HC_{enone}C_{extremal}) + \tau(HCC_{enone}C_{ring})$
839		824	$\delta(CCC)_{ring}$
832	822	819	τ(HCCC)ring
811	022	810	T(HCCC)ring
774		801	$\tau(\text{HCCoronaCring}) \pm \tau(\text{HCCC})_{\text{ring}}$
729/751	750	739	$\delta(\Omega C_{asthonyl} C_{anono})$
713	711	721	$\tau(CCCC)_{ring} + \gamma(O_{carbonyl}C_{anona}C_{carbonyl})$
679	, 11	693	T(CCCC)ring
674		664	$v(C1C)_{ring} + \delta(CCC)_{ring}$
663		659	$\tau(CCCC)$ ring + $\nu(O_{archenvel}C_{archenvel})$
635		629	δ(CCC) ring
623		629	$\delta(CCC)_{ring}$
611		617	$v(C1C)_{ring} + \delta(OC_{corbonyl}C_{opena}) + \delta(CCC)_{ring}$
536		517	$\delta(CC_{anona}C_{ring}) + \delta(C_{anona}C_{rathony}C_{anona})$
494		491	$\tau(CCCC)_{ring} + \gamma(C CCC)_{ring} + \gamma(C_{anona}CCC_{ring})$
460		462	$\delta(OC_{earbonyl}C_{enone}) + \delta(CC_{enone}C_{rine}) + \delta(CC_{rine}C_{anone})$
429		419	
407		406	T(CCCC)ring
391		406	T(CCCC) ring
366		374	$\delta(CC_{ring}C_{anona})$
349		343	T(CCCringConone) + T(CcarbonylCCanoneCring) + v(ClCCC)ring
334		343	$\tau(CCC_{ring}C_{anona}) + \gamma(ClCCC)_{ring}$
554		5-5	

Table 3. Observed Raman and IR band positions (cm⁻¹), calculated (scaled) vibrational wavenumbers (cm⁻¹) and assignments for the DB chlorine.

323	316	$\delta(C_{enone}C_{carbonyl}C_{enone}) + \delta(ClCC)_{ring}$
285	282	δ(ClCC) _{ring}
231	242	$\delta(OC_{carbonyl}C_{enone}) + \delta(CC_{enone}C_{carbonyl})$
190	192	Lattice
165	168	Lattice
122	148	Lattice
89	87	Lattice
64	67	Lattice

Abreviation: v, stretching; δ , bending; τ , torsion; γ , out-of-plane.

Both experimental spectra of dibenzalacetone derivatives depict many similarities as can be seen at Figures 2a and 2b. At the fingerprint region, a very strong Raman band at 1590 cm⁻¹, for DB chlorine, was attributed to the stretching of C=O in combination with CC stretching of aromatic ring. In the IR spectrum, a very strong C=O stretching mode appeared at 1626 cm⁻¹ associated with enone's CC stretchings. For DB ethoxy the carbonyl stretching mode was identified at 1584 cm⁻¹ e 1583 cm⁻¹ for Raman and IR respectively, both with strong intensity. A very strong peak was noticed at 1640 cm⁻¹ in the experimental IR data of DB ethoxy, which was related to bending and torsion modes between crystallization water and carbonyl group. The CC stretching modes of aromatic rings emerged in Raman spectrum at 1650 (strong), 1603 (medium), 1569 (very strong) and 1556 cm⁻¹ (weak) for DB ethoxy while for DB chlorine were at 1566 (medium) and 1407 cm⁻¹ (weak). These modes have also been identified in the IR spectrum at 1601 (very strong) and 1568 cm⁻¹ (wery strong) for DB ethoxy and at 1589 (very strong), 1566 (medium) and 1406 cm⁻¹ (medium) for DB chlorine.

Figure 3. Optimized structure (in vacuum) of trihydrated model of DB ethoxy (a) and DB chlorine (b) with nomenclature used for the PED analysis.

Continuing down the fingerprint region, it was possible to visualize a decrease in the intensity of the bands for the two compounds mainly in the Raman spectrum. In the infrared, there were still some high intensity peaks. In this region, below 1500 cm⁻¹, the modes were mainly attributed to CC stretching, HCC, CCC and OCC bending, HCCC and CCCC torsion, OCCC and CCCC out-of-plane. Some specific modes of each compound can also be seen, mainly those due to the water molecules close to the ethoxy groups as well as some modes related to the chlorine atoms in DB chlorine.

In a spetral region comprised between 3066 and 3012 cm⁻¹, some very weak Raman peaks were attributed to CH stretching of the aromatic rings for both compounds. In addition, for DB ethoxy, from 2977 to 2862 cm⁻¹, we assigned modes to CH stretching due to ethoxy groups.

3.3. Cytotoxicity assay

The Figure 4 shows the % RCV of the investigated compounds whose data were used for a preliminary structure–activity relationship analysis. The results showed that

small modifications to the compound chemical structure were able to alter the biological activity. The analysis of the acquired cytotoxicity data revealed that the compound DB chlorine demonstrated the strongest activity against HCT-116 cells (% RCV = 85.03 ± 0.57). The strong cytotoxic effect of DB chlorine can be attributed to the combined effect of the presence of electron withdrawing chlorine atom at the rings. The presence of electron donor ethoxy groups at the rings reduces the cytotoxic effect demonstrated by the weak activity of DB ethoxy (% RCV = 8.21 ± 4.32). The compounds revealed little cytotoxicity activity against PC3 cells and the same behavior in relation to the substituent group, whereas for SNB cells they were not active.

Our work corroborates the study by Dias et al. [40], in which the halogen substituents on B-ring of chalcones improve citotoxity activity against HCT-116 cells compared to the hydroxylated, methylated or methoxylated analogues. In this same work, a structure-activity analysis also revealed an improvement in cell growth inhibition as the B-ring substituent goes from F to Cl and to Br, either in 3- or 4-position. However, chalcones with the halogen substituents at the 3-position of the aromatic B-ring seems to be more active than those substitued at the 4-position. This same improvement effect in cytotoxic activity provided by the chlorine substituted in the aromatic rings of chalcone derivatives at the *para* position was also observed against HepG2 liver cancer cells[41]. A different paper by Iftikhar et al. [42] revealed that chalcones with small substituents on B-ring display better anti-proliferative activity against HCT-116 human colon cancer cell line, which suggests that the linear extension of the structure may impose greater difficulty to fit inside of the p53 cavity, as well as adding an additional cost of interaction with the solvent for the aromatic ring.

Figure 4. Cytotoxicity of the chalcones DB chlorine and DB ethoxy at a single concentration (10 μ M) against HCT-116 and PC3 cells after 72 h of incubation using MTT assay. *** p<0.001, ^{ns} p>0.05 (not significant).

3.4. In silico drug-likeness evaluation

The term "drug-likeness" is related how the medication is administrated. The R05 rules were created in order to predict whether a compound would have problems in orally activation. Table 4 shows the physicochemical properties, lipophilicity, drug-likeness and pharmacokinetics *in silico* of two said compounds. DB ethoxy and DB chlorine passed all Lipinski R05 rules, however DB chlorine displayed 1 violation (MLOGP> 4.15). Both were moderately soluble, had high gastrointestinal absorption and provided appropriate bioavailability. DB ethoxy compound appears to be an inhibitor of the cytochromes 450 enzyme family. However, DB chlorine did not inhibit the subfamilies CYP2D6 and CYP3A4. These enzymes play an important role in the metabolism of anticancer drugs, especially the subfamily CYP3A4 that catalyzes pro-drug activation by increasing the possibility of activation in tumor tissues. P-glycoprotein was not inhibited by any of the compounds.

	Physicochemical Properties					Lipop	Lipophilicity		Drug-likeness		Pharmacokinetics					
	mol. wt. g/mol	ROT B (n)	HBA (n)	HBD (n)	ESOL LogS	TPSA (Å)	CLogP (o/w)	Bioavailability Score	Lipinski	GIA	P-gp	CYP1A2	CYP2C19	CYP2C9	CYP2D6	CYP3A4
DB ethoxy	322.4	8	3	0	-4.93 (MS)	35.53	4.55	0.55	Yes (0)	High	No	Yes	Yes	Yes	Yes	Yes
DB chlorine	303.2	4	1	0	-5.37 (MS)	17.07	4.92	0.55	Yes (1)	High	No	Yes	Yes	Yes	No	No
Ref.	<500 [43,44]	<10 [45]	≤10 [43,44]	≤5 [43,44]		<140 [43,44]	<5 [43,44]	0.55 [46]	-	-	-	-	-	-	-	-

Table 4. *In silico* Physicochemical, lipophilicity, Drug-likeness and pharmacokinetics profile of DB ethoxy and DB chlorine.

Abreviations: mol. wt., molecular weight; n, number; ROTB, rotatable bonds; HBA, hydrogen bond acceptors; HBD, hydrogen bond donors; ESOL[47], Estimated Solubility with classes in bracket (HS-highly soluble, VS-very soluble, MS-moderately soluble, and VS-vey soluble); TPSA, topological polar surface area; CLogP o/w, logarithm of compound partition coefficient between n-octanol and water, GIA, gastrointestinal absorption; P-gp, P-glycoprotein; CYP1A2, Cytochrome P450 1A2; CYP2C19, Cytochrome P450 2C19; CYP2C9, Cytochrome P450 2C9; CYP2D6, Cytochrome P450 2D6; CYP3A4, Cytochrome P450 3A4.

4. Conclusions

Dibenzalacetone derivatives, also called bis-chalcones by some authors, are substances with proven biological actions, especially against cancer cells. They can be synthesized by double condensation with two equivalents of aromatic aldehydes. The (1E,4E)-1,5-bis(4-ethoxyphenyl)penta-1,4-dien-3-one and (1E,4E)-1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one were synthetized and characterised by NMR. The excellent agreement between theoretical and experimental NMR data confirmed the proposed structures of dibenzalacetone derivatives. It was shown that DB chlorine had a remarkable cytotoxic effect against HCT-116 colon cancer cells. Both compounds passed on drug-likeness test which may indicate good potential as oral medication, especially for DB chlorine that inhibited colon cancer cell growth. Also, a complete study on vibrational analysis was performed using the FT-IR and FT-Raman spectroscopy as well as quantum chemical calculations on B3LYP/6-31G(d,p) level. The description of normal modes according to the PED were used to elucidate the vibrational wave number assignments of

the synthetic dibenzalacetone derivatives, which led us to conclude that DB ethoxy was obtained in a hydrated form.

Author Contributions

Conceptualization, Mauro M. de Oliveira and Carlos E. S. Nogueira; methodology, Alexandre M. R. Teixeira; validation, Pedro de Lima-Neto; formal analysis, Manoel O. de Moraes, Claudia Pessoa, Francisco Washington A. Barros Nepomuceno; investigation, Mauro M. de Oliveira, Emmanuel S. Marinho; resources, Helcio S. Santos; data curation, Francisco Wagner Q. Almeida-Neto; writing—original draft preparation, Mauro M. de Oliveira; writing—review and editing, Mauro M. de Oliveira, Carlos E. S. Nogueira, Alexandre M. R. Teixeira; visualization, Mauro M. de Oliveira; supervision, Carlos E. S. Nogueira; project administration, Mauro M. de Oliveira. All authors have read and agreed to the published version of the manuscript.

Declaration of Competing Interest

The authors declare no conflict of interest.

Acknowledgments

Authors acknowledge Beatriz Gonçalves Cruz for the support in the infrared spectroscopy measurements, and to the Dr. Paulo de Tarso Cavalcante Freire for the support in the DFT calculations. A.M.R. Teixeira, Ph.D., also acknowledges financial support from the CNPq (Grant#: 305719/2018-1).

We also thank CENAPAD-SP for the use of Gaussian09 software package and for computational facilities made available through the project "proj373".

References

- N. Nohut Maşlakcı, A. Biçer, G. Turgut Cin, A. Uygun Öksüz, Electrochromic properties of some bis-chalcone derivatives-based nanofibers, J. Appl. Polym. Sci. 135 (2018) 25–30. doi:10.1002/app.46010.
- S. Shettigar, K. Chandrasekharan, G. Umesh, B.K. Sarojini, B. Narayana, Studies on nonlinear optical parameters of bis-chalcone derivatives doped polymer, Polymer (Guildf). 47 (2006) 3565–3567. doi:10.1016/j.polymer.2006.03.062.

- [3] N.S.K. Reddy, R. Badam, R. Sattibabu, M. Molli, V.S. Muthukumar, S.S.S. Sai,
 G.N. Rao, Synthesis, characterization and nonlinear optical properties of
 symmetrically substituted dibenzylideneacetone derivatives, Chem. Phys. Lett.
 616–617 (2014) 142–147. doi:10.1016/j.cplett.2014.10.043.
- [4] A.T. Bale, K.M. Khan, U. Salar, S. Chigurupati, T. Fasina, F. Ali, S.S. Nanda, Kanwal, A. Wadood, M. Taha, M. Ghufran, S. Perveen, Chalcones and bischalcones: As potential α-amylase inhibitors; synthesis, in vitro screening, and molecular modelling studies, Bioorg. Chem. 79 (2018) 179–189. doi:10.1016/j.bioorg.2018.05.003.
- [5] T.A.-K. Saleh, Synthesis and Characterization of Chalcone Derivatives from Furfural, Chem. Adv. Mater. 2 (2017) 44–52. http://issrpublishing.com/cam/.
- [6] M.N. Gomes, E.N. Muratov, M. Pereira, J.C. Peixoto, L.P. Rosseto, P.V.L. Cravo, C.H. Andrade, B.J. Neves, Chalcone derivatives: Promising starting points for drug design, Molecules. 22 (2017). doi:10.3390/molecules22081210.
- [7] L. Ni, C.Q. Meng, J.A. Sikorski, Recent advances in therapeutic chalcones, Expert Opin. Ther. Pat. 14 (2004) 1669–1691. doi:10.1517/13543776.14.12.1669.
- [8] Z. Nowakowska, A review of anti-infective and anti-inflammatory chalcones, Eur. J. Med. Chem. 42 (2007) 125–137. doi:10.1016/j.ejmech.2006.09.019.
- C. Zhuang, W. Zhang, C. Sheng, W. Zhang, C. Xing, Z. Miao, Chalcone: A Privileged Structure in Medicinal Chemistry, Chem. Rev. 117 (2017) 7762–7810. doi:10.1021/acs.chemrev.7b00020.
- J.H. Cheng, C.F. Hung, S.C. Yang, J.P. Wang, S.J. Won, C.N. Lin, Synthesis and cytotoxic, anti-inflammatory, and anti-oxidant activities of 2',5'-dialkoxylchalcones as cancer chemopreventive agents, Bioorganic Med. Chem. 16 (2008) 7270–7276. doi:10.1016/j.bmc.2008.06.031.
- [11] F. Inamullah, I. Fatima, S. Khan, M.H. Kazmi, A. Malik, R.B. Tareen, T. Abbas, New antimicrobial flavonoids and chalcone from Colutea armata, Arch. Pharm. Res. 40 (2017) 915–920. doi:10.1007/s12272-017-0901-6.
- [12] N. Aoki, M. Muko, E. Ohta, S. Ohta, C-geranylated chalcones from the stems of

Angelica keiskei with superoxide-scavenging activity, J. Nat. Prod. 71 (2008) 1308–1310. doi:10.1021/np800187f.

- [13] A. Modzelewska, C. Pettit, G. Achanta, N.E. Davidson, P. Huang, S.R. Khan, Anticancer activities of novel chalcone and bis-chalcone derivatives, Bioorganic Med. Chem. 14 (2006) 3491–3495. doi:10.1016/j.bmc.2006.01.003.
- [14] H.N. ElSohly, A.S. Joshi, A.C. Nimrod, L.A. Walker, A.M. Clark, Antifungal Chalcones from Maclura tinctoria, Plant Med. 67 (2001) 87–89.
- J.N. Domínguez, C. León, J. Rodrigues, N.G. De Domínguez, J. Gut, P.J.
 Rosenthal, Synthesis and evaluation of new antimalarial phenylurenyl chalcone derivatives, J. Med. Chem. 48 (2005) 3654–3658. doi:10.1021/jm0582080.
- [16] M. Chen, S.B. Christensen, J. Blom, E. Lemmich, L. Nadelmann, K. Fich, T.G. Theander, A. Kharazmi, Licochalcone A, a novel antiparasitic agent with potent activity against human pathogenic protozoan species of Leishmania, Antimicrob. Agents Chemother. 37 (1993) 2550–2556. doi:10.1128/AAC.37.12.2550.
- [17] G. Liang, L. Shao, Y. Wang, C. Zhao, Y. Chu, J. Xiao, Y. Zhao, X. Li, S. Yang, Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents, Bioorganic Med. Chem. 17 (2009) 2623–2631. doi:10.1016/j.bmc.2008.10.044.
- [18] M. Vijaya Bhaskar Reddy, Y.C. Shen, E. Ohkoshi, K.F. Bastow, K. Qian, K.H. Lee, T.S. Wu, Bis-chalcone analogues as potent NO production inhibitors and as cytotoxic agents, Eur. J. Med. Chem. 47 (2012) 97–103. doi:10.1016/j.ejmech.2011.10.026.
- [19] L. Sansalone, E.A. Veliz, N.G. Myrthil, V. Stathias, W. Walters, I.I. Torrens, S.C. Schürer, S. Vanni, R.M. Leblanc, R.M. Graham, Novel Curcumin inspired bis-chalcone promotes endoplasmic reticulum stress and glioblastoma neurosphere cell death, Cancers (Basel). 11 (2019) 1–17. doi:10.3390/cancers11030357.
- [20] R.S. Lima, C.N. Perez, C.C. da Silva, M.J. Santana, L.H.K. Queiroz Júnior, S. Barreto, M.O. de Moraes, F.T. Martins, Structure and cytotoxic activity of terpenoid-like chalcones, Arab. J. Chem. 12 (2019) 3890–3901. doi:10.1016/j.arabjc.2016.02.013.

- [21] N.K. Duddukuri, S. Thatikonda, C. Godugu, R.A. Kumar, N. Doijad, Synthesis of Novel Thiophene-Chalcone Derivatives as Anticancer- and Apoptosis-Inducing Agents, ChemistrySelect. 3 (2018) 6859–6864. doi:10.1002/slct.201800613.
- [22] M. Burcu Gürdere, A. Aydin, B. Yencilek, F. Ertürk, O. Özbek, S. Erkan, Y. Budak, M. Ceylan, Synthesis, Antiproliferative and Cytotoxic Activities, DNA Binding Features and Molecular Docking Study of Novel Enamine Derivatives, Chem. Biodivers. 17 (2020). doi:10.1002/cbdv.202000139.
- [23] M.M. Maluleka, M.J. Mphahlele, Crystal structure of (1E,4E)-1,5-bis(4-chloro-phenyl)penta-1,4-dien-3-one, C17H12Cl2O, Zeitschrift für Krist. 232 (2017) 1049–1050. doi:10.1515/ncrs-2017-0212.
- [24] S. Chantrapromma, P. Ruanwas, N. Boonnak, K. Chantrapromma, H.K. Fun, Synthesis, antityrosinase activity of curcumin analogues, and crystal structure of (1E,4E)-1,5-bis(4-ethoxyphenyl)penta-1,4-dien-3-one, Crystallogr. Reports. 61 (2016) 1081–1085. doi:10.1134/S1063774516070051.
- [25] J.G. Schmidt, Ueber die Einwirkung von Aceton auf Furfurol und auf Bittermandelöl bei Gegenwart von Alkalilauge, Berichte der Dtsch. Chem. Gesellschaft. 14 (1881) 1459–1461. doi:10.1002/cber.188101401306.
- [26] L. Claisen, A. Claparède, Condensationen von Ketonen mit Aldehyden., Berichte der Dtsch. Chem. Gesellschaft. 14 (1881) 2460–2468.
- [27] and D.J.F. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
 Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji,
 X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B.
 Mennucci, H. P. Hratchian, J. V. Ort, Gaussian 09, Revision A.02, ([s.d.]).
- W. Kohn, L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133–A1138.
 doi:10.1103/PhysRev.140.A1133.
- P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields, J. Phys. Chem. 98 (1994) 11623–11627. doi:10.1021/j100096a001.

- [30] M.D. Halls, J. Velkovski, H.B. Schlegel, Harmonic frequency scaling factors for Hartree-Fock, S-VWN, B-LYP, B3-LYP, B3-PW91 and MP2 with the Sadlej pVTZ electric property basis set, Theor. Chem. Acc. 105 (2001) 413–421. doi:10.1007/s002140000204.
- [31] JOHNSON III, D. RUSSELL, NIST Computational Chemistry Comparison and Benchmark Database, NIST Stand. Ref. Database Number 101. (2020). doi:10.18434/T47C7Z.
- [32] M.H. Jamroz, Vibrational Energy Distribution Analysis VEDA, (2010).
- [33] R. McWeeny, Perturbation Theory for the Fock-Dirac Density Matrix, Phys. Rev. 126 (1962) 1028. doi:https://doi.org/10.1103/PhysRev.126.1028.
- [34] R. Ditchfield, Self-consistent perturbation theory of diamagnetism I. A gauge-invariant LCAO method for N.M.R. Chemical shifts, Mol. Phys. 27 (1974) 789–807. doi:https://doi.org/10.1080/00268977400100711.
- [35] K. Wolinski, J.F. Hinton, P. Pulay, Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations, J. Am. Chem. Soc. 112 (1990) 8251–8260. doi:10.1021/ja00179a005.
- [36] J.R. Cheeseman, A comparison of models for calculating nuclear magnetic resonance shielding tensors, J. Chem. Phys. 104 (1996) 5497–5509. doi:https://doi.org/10.1063/1.471789.
- [37] T. Mosmann, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, J. Immunol. Methods. 65 (1983) 55–63. doi:10.1016/0022-1759(83)90303-4.
- [38] GraphPad Software, La Jolla California USA, (n.d.)., ([s.d.]).
- [39] A. Daina, O. Michielin, V. Zoete, SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep. 7 (2017) 1–13. doi:10.1038/srep42717.
- [40] T.A. Dias, C.L. Duarte, C.F. Lima, M.F. Proença, C. Pereira-Wilson, Superior anticancer activity of halogenated chalcones and flavonols over the natural flavonol quercetin, Eur. J. Med. Chem. 65 (2013) 500–510. doi:10.1016/j.ejmech.2013.04.064.

- [41] P. Patil, P.A. Khan, S. Zangade, Synthesis of 1, 3-diaryl-2-propene-1-one derivatives using tripotassium phosphate as an alternative and efficient catalyst and study its cytotoxic and antimicrobial properties, Curr. Chem. Lett. 9 (2020) 183–198. doi:10.5267/j.ccl.2020.3.001.
- [42] S. Iftikhar, S. Khan, A. Bilal, S. Manzoor, M. Abdullah, A.H. Emwas, S. Sioud, X. Gao, G.A. Chotana, A. Faisal, R.S.Z. Saleem, Synthesis and evaluation of modified chalcone based p53 stabilizing agents, Bioorganic Med. Chem. Lett. 27 (2017) 4101–4106. doi:10.1016/j.bmcl.2017.07.042.
- [43] C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev. 23 (1997) 3–25.
- [44] C.A. Lipinski, Lead- and drug-like compounds: The rule-of-five revolution, Drug Discov. Today Technol. 1 (2004) 337–341. doi:10.1016/j.ddtec.2004.11.007.
- [45] D.F. Veber, S.R. Johnson, H.Y. Cheng, B.R. Smith, K.W. Ward, K.D. Kopple, Molecular properties that influence the oral bioavailability of drug candidates, J. Med. Chem. 45 (2002) 2615–2623. doi:10.1021/jm020017n.
- [46] Y.C. Martin, A bioavailability score, J. Med. Chem. 48 (2005) 3164–3170.
 doi:10.1021/jm0492002.
- [47] J.S. Delaney, ESOL: Estimating aqueous solubility directly from molecular structure, J. Chem. Inf. Comput. Sci. 44 (2004) 1000–1005.
 doi:10.1021/ci034243x.

Supplementary Material

Full Spectroscopic Characterization and Cytotoxicity Activity of Synthetic Dibenzalacetone Derivatives.

Mauro M. de Oliveira^{a*}, Carlos E.S. Nogueira^{a,e}, Francisco Wagner Q. Almeida-Neto^f, Helcio S. Santos^{a,b}, Alexandre M. R. Teixeira^{a,e}, Pedro de Lima-Neto^f, Emmanuel S. Marinho^g, Manoel O. de Moraes^c, Claudia Pessoa^c, Francisco Washington A. Barros-Nepomuceno^d.

^a Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil

^b Science and Technology Centre - Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil

^c Center for Research and Drug Development, Federal University of Ceará, Fortaleza, CE, Brazil

^d Institute of Health Sciences, University of International Integration of the Afro-Brazilian Lusophony, Acarape, CE, Brazil

^e Department of physics, Regional University of Cariri, Crato, CE, Brazil

^f Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Fortaleza, CE , Brazil.

^g State University of Ceará, Faculty of Philosophy Dom Aureliano Matos, Limoeiro do Norte, CE, Brazil.

*Corresponding author. Department of Biological Chemistry, Regional University of Cariri, Campus Pimenta II, CEP: 63.100-000, Crato, CE, Brazil.

E-mail addresses: mauropandi@gmail.com

Figure S1. ¹H NMR spectrum (CDCl₃, 300 MHz) of DB ethoxy.

Figure S2. Expansion of ¹H NMR spectrum (CDCl₃, 300 MHz) of DB ethoxy.

Figure S3. Expansion of ¹H NMR spectrum (CDCl₃, 300 MHz) of DB ethoxy.

Figure S4. ¹³C NMR spectrum (CDCl₃, 125 MHz) of DB ethoxy.

Figure S6. Expansion of ¹H NMR spectrum (CDCl₃, 300 MHz) of DB chlorine.

Figure S7. ¹³C NMR spectrum (CDCl₃, 125 MHz) of DB chlorine.

Figure S8. Expansion of ¹³C NMR spectrum (CDCl₃, 125 MHz) of DB chlorine.

Figure S9. Experimental IR spectra of DB ethoxy after dehydration.

Figure S10. Comparison of the Raman calculated spectra of different DB ethoxy models along with the experimental spectrum for the trihydrated crystal in the 200 to 3450 cm^{-1} range.

Figure S11. Comparison of the infrared calculated spectra of different DB ethoxy models along with the experimental spectrum for the trihydrated crystal in the 600 to 4000 cm⁻¹ range.

Figure S12. Comparison of the Raman calculated spectra of DB chlorine model along with the experimental spectrum for the crystal in the 200 to 3450 cm^{-1} range.

Figure S13. Comparison of the infrared calculated spectra of DB chlorine model along with the experimental spectrum for the crystal in the 600 to 4000 cm^{-1} range.

Figure S14. Mass spectra of DB chlorine.

Figure S15. Mass spectra of DB ethoxy.

Figure S16. Dual scaling factors for DB ethoxy anhydrous, DB ethoxy monohydrated, DB ethoxy trihydrated models and DB chlorine.

Table S1. Calculated vibrational wavenumbers (in cm⁻¹) unscaled and scaled by the scale factor 0.9716 (ω <1800) and 0.9449 (ω ≥1800), experimental Raman and infrared bands positions in units of cm⁻¹ and assignment of vibrational modes for DB ethoxy in anhydrous model.

Wcalc	Wscal	WRaman	Wir	Assignment of the molecular vibrations with PED (%)
3221	3043			v(C1H25)(49) + v(C14H34)(47)
3221	3043	3034vw/3063vw	3037vw	v(C1H25)(47) + v(C14H34)(49)
3209	3032			v(C3H26)(37) + v(C4H27)(11) + v(C16H35)(39) + v(C17H36)(12)
3209	3032			v(C3H26)(39) + v(C4H27)(12) + v(C16H35)(37) + v(C17H36)(11)
3191	3015			v(C3H26)(11) + v(C4H27)(35) + v(C16H35)(12) + v(C17H36)(36)
3190	3015	3012vw		v(C3H26) (12) + v(C4H27) (38) + v(C16H35) (11) + v(C17H36) (37)
3180	3005			v(C6H28)(50) + v(C13H33)(44)
3180	3005			v(C6H28)(44) + v(C13H33)(50)
3174	2999			v(C8H30)(45) + v(C10H31)(45)
3165	2991			v(C8H30)(45) + v(C10H31)(45)
3158	2984			v(C7H29)(47) + v(C11H32)(48)
3158	2984	2977vw	2985vw	v(C7H29)(46) + v(C11H32)(45)
3132	2959		2976vw	v(C22H40) (38) + v(C22H41) (38) + v(C24H45) (11) + v(C24H46) (11)
3132	2959			v(C22H40)(11) + v(C22H41)(11) + v(C24H45)(38) + v(C24H46)(38)
3125	2953			v(C22H39) (16) + v(C24H44) (46) + v(C24H45) (14) + v(C24H46) (14)
3125	2953	2936vw	2935vw	v(C22H39) (46) + v(C22H40) (14) + v(C22H41) (14) + v(C24H44) (16)
3050	2882			v(C22H39)(19) + v(C22H40)(16) + v(C22H41)(16) + v(C24H44)(19) +
				v(C24H45)(15) + v(C24H46)(15)
3050	2882	2881vw		v(C22H39)(19) + v(C22H40)(15) + v(C22H41)(15) + v(C24H44)(19) +
				v(C24H45) (16) + v(C24H46) (16)
3049	2881		2885vw	v(C21H37)(34) + v(C21H38)(34) + v(C23H42)(15) + v(C23H43)(15)

3049	2881			v(C21H37)(15) + v(C21H38)(15) + v(C23H42)(34) + v(C23H43)(34)
3008	2843	2862vw		v(C21H37)(26) + v(C21H38)(26) + v(C23H42)(23) + v(C23H43)(23)
3008	2842			v(C21H37)(23) + v(C21H38)(23) + v(C23H42)(26) + v(C23H43)(26)
1745	1605			v(018C0)(51) + v(C7C8)(12) + v(C10C11)(12)
1745	1695	1642	1640	v(010C9)(51) + v(010C11)(12) + v(010C11)(12)
1080	1052	1045W	104078	V(C/C8)(19) + V(C10C11)(19)
1669	1622	1620s	1620vw	v(C4C3)(14) + v(C1/C16)(14)
1657	1610	1603m	1601vs	v(C4C3)(11) + v(C17C16)(11)
1639	1593	1584s	1583s	v(O18C9)(30) + v(C7C8)(14) + v(C10C11)(14)
1613	1568			v(C2C1)(14) + v(C15C14)(15)
1613	1567	1556w/1569vs	1568vs	v(C2C1)(15) + v(C15C14)(14)
1560	1515			$\delta(H25C1C2)(11) + \delta(H26C3C4)(11) + \delta(H27C4C5)(12) + \delta(H28C6C1)$
1000	1010			$(12) + \delta(H43C23H42) (15) + \delta(C3C2C1) (10) + \delta(H33C13C14) (13) +$
				(12) + 0(11452251142)(13) + 0(252221)(10) + 0(1155215214)(13) + 0(1155214)(13) + 0(1152
				$0(\Pi 54 \Box 14 \Box 15)(\Pi 1) + 0(\Pi 55 \Box 10 \Box 1)(\Pi 0) + 0(\Pi 50 \Box 1/\Box 10)(\Pi 2) +$
				o(H38C21H37) (14)
1560	1515	1515vw	1510vs	$\delta(H25C1C2)(11) + \delta(H26C3C4)(11) + \delta(H2/C4C5)(12) + \delta(H28C6C1)$
				$(12) + \delta(H43C23H42) (15) + \delta(C3C2C1) (10) + \delta(H33C13C14) (13) +$
				δ (H34C14C15) (11) + δ (H35C16C17) (10) + δ (H36C17C16) (12) +
				δ(H38C21H37) (14)
1535	1492			$\delta(H38C21H37)(32) + \delta(H43C23H42)(32)$
1535	1491	1497vw	1477w	$\delta(H38C21H37)(31) + \delta(H43C23H42)(31)$
1516	1473			$\delta(H41C22H40)(16) + \delta(H46C24H45)(36)$
1516	1473	1475vw	1469vw	$\delta(H41C22H40)(36) + \delta(H46C24H45)(16)$
1500	1475	147570	14077	$\delta(H30C22H41)(10) + \delta(H40C22H30)(10) + \delta(H44C24H46)(10) + \delta(H44C4A6)(10) + \delta(H44C4A6)(10)$
1500	1437			0(1139C221141)(19) + 0(1140C221139)(19) + 0(1144C241140)(19) + S(1145C241144)(10)
1500	1457	1450		0(143C241144)(19) S(1120C221141)(10) + S(1140C221120)(10) + S(1144C24114C)(10) + S(1144C2414C)(10) + S(1144C24100) + S(14
1500	1457	1459VW		0(H39C22H41)(19) + 0(H40C22H39)(19) + 0(H44C24H46)(19) + 0(H44C24H46
				δ(H45C24H44) (19)
1470	1428	1425w	1425m	v(C4C3)(13) + v(C17C16)(10) + v(C1C6)(12)
1470	1428			v(C4C3)(12) + v(C17C16)(12) + v(C1C6)(10) + v(C14C13)(10)
1443	1402			δ (H39C22H41) (10) + δ (H40C22H39) (10) + δ (H44C24H46) (10) +
				$\delta(H45C24H44)(10) + \tau(H43C23O20C2)(10)$
1442	1402	1396vw	1396w	δ (H39C22H41) (10) + δ (H40C22H39) (10) + δ (H44C24H46) (10) +
				$\delta(H45C24H44)(10) + \tau(H38C21O19C15)(10)$
1412	1372			$\tau(H38C21019C15)(10) + \tau(H43C23020C2)(14)$
1412	1372			$\pi(H38C21019C15)(14) + \pi(H43C23020C2)(14)$
1412	1249	1251	1249	$\chi(1130C21019C15)(14) + \chi(1145C25020C2)(10)$
1260	1220	1331VW	1346VW	$0(\Pi 50C8C9)(10)$ u(G(G5)(12)) + u(G12G12)(11) + S(U22G11G12)(11)
1308	1330	1325VW	1333W	V(COC5)(12) + V(C15C12)(11) + 0(H52C11C12)(11)
1357	1318	1311w	1200	$\delta(H29C/C8)(14) + \delta(H30C8C9)(10) + \delta(H31C10C11)(14)$
1347	1308		1308w	$\delta(H28C6C1)(11) + \delta(H33C13C14)(11)$
1345	1307	1295w		$\delta(\text{H25C1C6})(10) + \delta(\text{H28C6C1})(12) + \delta(\text{H30C8C9})(11)$
1341	1303			$\delta(H25C1C2)(10) + \delta(H28C6C1)(10)$
1322	1285		1292m	$\delta(H29C7C8)(17) + \delta(H32C11C12)(11)$
1311	1273	1272vw		δ(H30C8C9) (11)
1309	1272			$\delta(H37C21C22)(30) + \delta(H42C23C24)(34)$
1309	1272			$\delta(H37C21C22)(34) + \delta(H42C23C24)(30)$
1300	1263			v(0.19C15)(21) + v(0.20C2)(21)
1200	1262	1251m	125228	v(C1C6)(11) + v(C14C13)(11) + v(O19C15)(14) + v(O20C2)(14)
1222	1202	1231m	1210	$S(U_{10}) = S(U_{10}) + V(U_{10}) + S(U_{10}) + V(U_{10}) + V(U_{10}) + V(U_{10}) + S(U_{10}) + S(U_$
1230	1203	1220w	1219VW	S(1129C7C6)(11) + 0(1152C11C12)(12)
1230	1201	1196W	11908	0(H32CTTCT2)(TT)
1206	11/2	11/6m	1169vs	$\delta(H25C1C6)(10) + \delta(H28C6C1)(14) + \delta(H33C13C14)(14)$
1204	1170			$\delta(H25C1C6)(11) + \delta(H28C6C1)(14) + \delta(H33C13C14)(14)$
1189	1155			δ (H37C21C22) (12) + δ (H42C23C24) (12) + τ (H37C21O19C15) (13) +
				τ(H42C23O20C2) (13)
1189	1155	1158vw		$\delta(H37C21C22)(12) + \delta(H42C23C24)(12) + \tau(H37C21O19C15)(13) +$
				τ(H42C23O20C2) (13)
1149	1116			$\delta(H26C3C4)(14) + \tau(H45C24C23O20)(10) + \tau(H46C24C23O20)(10)$
1149	1116	1127vw		δ (H35C16C17) (15) + τ (H40C22C21O19) (12) + τ (H41C22C21O19) (11)
1142	1110			τ (H45C24C23O20) (11) + τ (H46C24C23O20) (11)
1142	1110	1113w	1115w	$\delta(H36C17C16)(11) + \tau(H40C22C21019)(10) + \tau(H41C22C21019)(10)$
1114	1083	1008	1007	$v(CSC0)(25) + v(COC10)(25) + \delta(H30CSC0)(15) + \delta(H31C10C11)(15)$
1072	1042	1098VW	1045	v(C22C21)(20) + v(C24C22)(20) + v(C10C21)(20) + v(C20C22)(21)
1075	1042	1049VW	10438	V(22C21)(20) + V(224C23)(20) + V(019C21)(20) + V(020C23)(21)
10/2	1042		1025	v(C22C21)(20) + v(C24C23)(20) + v(O19C21)(21) + v(O20C23)(20)
1043	1014		1025vw	$\tau(H29C/C8C9)(39) + \tau(H32C11C12C13)(38)$
1035	1006			τ (H29C7C8C9) (38) + τ (H30C8C9C10) (10) + τ (H32C11C12C13) (38)
1027	997	996vw	989s	$\delta(C4C3C2) (22) + \delta(C17C16C15) (22) + \delta(C2C1C6) (12) + \delta(C15C14C13)$
				(12)
1026	997			$\delta(C4C3C2)(22) + \delta(C17C16C15)(22) + \delta(C2C1C6)(12) + \delta(C15C14C13)$
				(12)
990	962	981w		v(O18C9)(10) + v(C8C9)(23) + v(C9C10)(23)
966	938			$\tau(H26C3C4C5)(17) + \tau(H27C4C3C2)(21) + \tau(H35C16C17C12)(17) +$
200	200			$\tau(H_{36}C_{17}C_{16}C_{15})$ (20)
966	038	Q//ww		τ (H26C3C4C5) (17) + τ (H27C4C3C2) (20) + τ (H25C16C17C12) (17) +
200	150)++ v W		$\pi(120000+00)(17) + \pi(1270+0002)(20) + \pi(10001001/012)(17) + \pi(13001001/012)(21)$
054	027			$\frac{1}{2} \frac{1}{2} \frac{1}$
934	921			$\pi(\Pi_{2}\cup \Pi_{2}\cup \Pi_{2}\cup \Pi_{2})$ (14) + $\pi(\Pi_{2}\cup \Pi_{2}\cup \Pi_{2}\cup \Pi_{2})$ + $\pi(\Pi_{2}\cup \Pi_{2}\cup \Pi_$
052	026	024		$\frac{1}{(105010000)} (14) = \frac{1}{(1000000100)} (25) = \frac{1}{(1000010014015)} (25)$
953	926	924W		$\tau(H_{25}\cup I_{22}\cup 3)(14) + \tau(H_{28}\cup 0\cup 1\cup 2)(25) + \tau(H_{33}\cup 13\cup 14\cup 15)(25) + \tau(H_{33}\cup 14\cup 15\cup 14\cup 15)(25) + \tau(H_{33}\cup 14\cup 14)(25) + \tau(H_{33}\cup 14\cup 15)(25) + \tau(H_{33}\cup 14\cup 15)(25) + \tau(H_{33}\cup 14\cup 15)(25) + \tau(H_{33}\cup 14\cup 14)(25) + \tau(H_{33}\cup 14)(25) + \tau(H_{33}\cup 14\cup 14$
				τ(H34C14C15C16) (14)

943	916			v(C22C21)(15) + v(C24C23)(15)
943	916	909vw	922w	v(C22C21)(15) + v(C24C23)(14)
000	002	979	921w	$\pi(\text{H}_{20}\text{C}_{20}\text{C}_{10}) + \pi(\text{H}_{21}\text{C}_{10}\text{C}_{11}\text{C}_{12}) + \pi(\text{H}_{20}\text{C}_{10}\text{C}_{10}) + \pi(\text{H}_{21}\text{C}_{10}\text{C}_{11}) + \pi(\text{H}_{21}\text{C}_{10}) + \pi(\text{H}_$
900	002	0/0VW	001W	$\chi(13) = \chi(13) - \chi(13$
884	858			$\delta(C3C2C1)(10) + \delta(C16C15C14)(10)$
870	845			τ (H30C8C9C10) (15) + τ (H31C10C11C12) (25)
863	838	857w		$\delta(C3C2C1)(11) + \delta(C16C15C14)(11)$
853	829	830vw	835m	τ (H27C4C5C6) (16) + τ (H30C8C9C10) (12) + τ (H31C10C9C8) (13) +
				τ (H36C17C16C15) (15)
845	821			$\tau(H39C22C21019)(11) + \tau(H44C24C23020)(11)$
04J 04J	810		912m	$\pi(\text{H2}5\text{C}2\text{C}4\text{C}5)(14) + \pi(\text{H2}7\text{C}4\text{C}2\text{C}2)(11) + \pi(\text{H2}5\text{C}16\text{C}17\text{C}12)(14) + \pi(\text{H2}7\text{C}4\text{C}2\text{C}2)(11) + \pi(\text{H2}5\text{C}16\text{C}17\text{C}12)(14) + \pi(\text{H2}7\text{C}4\text{C}2\text{C}2)(11) + \pi(\text{H2}5\text{C}16\text{C}17\text{C}12)(14) + \pi(\text{H2}7\text{C}4\text{C}2\text{C}2)(11) + \pi(\text{H2}7\text{C}4\text{C}2\text{C}2)(11) + \pi(\text{H2}7\text{C}4\text{C}2)(11) + \pi(\text{H2}7\text{C}4\text{C}4\text{C}2)(11) + \pi(\text{H2}7\text{C}4\text{C}4)(11) + \pi(\text{H2}7\text{C}4\text{C}4)(11) + \pi(\text{H2}7\text{C}4)(11) + \pi(\text{H2}7)(11) + \pi(\text{H2}7)($
045	019		012111	$(H_{20}C_{3}C_{4}C_{3})(14) + (H_{2}/C_{4}C_{3}C_{2})(11) + (H_{3}S_{1}C_{1}C_{1}C_{1})(14) + (H_{2}/C_{4}C_{3}C_{2})(11) + (H_{3}S_{1}C_{1}C_{1}C_{1})(14) + (H_{3}/C_{4}C_{3}C_{2})(14) + (H_{3}/C_{4}C_{3})(14) + (H_{3}/C_{4}C_{3})(14) + (H_{3}/C_{4}C_{3})(14) + (H_{3}/C_{4})(14) + ($
				$\tau(H_{3}6C1/C16C15)(11)$
839	815	813vw		τ (H26C3C4C5) (17) + τ (H27C4C3C2) (16) + τ (H35C16C17C12) (17) +
				$\tau(H36C17C16C15)$ (16)
821	798	806vw	789w	τ (H25C1C2C3) (20) + τ (H34C14C15C16) (20)
817	794	791vw		τ (H25C1C2C3) (19) + τ (H28C6C1C2) (12) + τ (H33C13C14C15) (12) +
				τ (H34C14C15C16) (19)
81/	701			$\tau(H25C1C2C3)(36) + \tau(H28C6C5C7)(18) + \tau(H34C14C15C16)(36) +$
011	171			$\tau(H33C13C12C11)(18)$
700	765	776		S(C14C12C12)(10)
700	705	77000		0(C14C15C12)(10)
/49	728	/19vw//3/vw		$\tau(C_2C_1C_6C_5)(17) + \gamma(C_18C_8C_10C_9)(18)$
725	704	704vw		$\tau(C2C1C6C5)(23) + \tau(C15C14C13C12)(12)$
718	697	679vw		δ(018C9C10) (25)
689	669	664vw	661vw	$\gamma(018C8C10C9)$ (38)
652	634	638w	638vw	$\delta(C1C6C5)(11) + \delta(C2C1C6)(15) + \delta(C15C14C13)(14)$
651	632	625vw		$\delta(C1C6C5)(11) + \delta(C2C1C6)(15) + \delta(C15C14C13)(14)$
595	578	578vw/593w		$\delta(C1C6C5)(11) + \delta(C14C13C12)(10)$
573	557	55/ww/566ww		$\delta(018C9C10)(22) + \delta(C1C6C5)(11) + \delta(C14C13C12)(10)$
575	520	JJ+VW/J00VW		u(0)(0)(0)(22) + u(0)(0)(1)(1)(0)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)
555	520	520		$\gamma(020C1C3C2)(10) + \gamma(019C14C10C13)(10)$ S(C10C11C12)(11) + S(C9C0C10)(22)
530	515	539W		0(C10C11C12)(11) + 0(C8C9C10)(55)
528	513	516vw		$\gamma(020C1C3C2)(16) + \gamma(019C14C16C15)(16)$
444	431	438vw		$\delta(C6C5C7)(14) + \delta(O19C15C16)(10) + \delta(O20C2C3)(10)$
435	423	420vw		$\delta(O19C15C16)(21) + \delta(O20C2C3)(21)$
433	421	414vw		$\delta(019C15C16)(11) + \delta(020C2C3)(11) + \delta(C21019C15)(10) +$
				δ(C23O20C2) (10)
427	415			τ (C4C3C2C1) (10) + τ (C15C14C13C12) (22) + τ (C3C2C1C6) (10)
427	414	403w		τ (C4C3C2C1) (10) + τ (C15C14C13C12) (21) + τ (C3C2C1C6) (10)
383	372	38/1		$\tau(C17C16C15C14)(14) + \tau(C1C6C5C7)(13) + \tau(C2C2C1C3C2)(10) +$
505	512	30 4 7W		u(010014016015)(10) + u(010012017012)(13) + u(020010302)(10) + u(010014016015)(10) + u(011012017012)(12)
202	271	269		$\gamma(013C14C10C15)(10) + \gamma(011C15C17C12)(13)$ = $(017C1(015C14)(12) + -(01C(05C7)(12) + -(011C12C17C12)(12))$
382	3/1	308VW		$t(C1/C10C15C14)(15) + t(C1C0C5C7)(15) + \gamma(C11C15C17C12)(15)$
362	352	353VW		6(C22C21019)(20) + 6(C24C23020)(20)
329	319	300vw/320vw		$\delta(C22C21019)(17) + \delta(C24C23020)(17)$
271	263	271vw/279vw		τ (H39C22C21O19) (24) + τ (H40C22C21O19) (10) + τ (H41C22C21O19)
				$(10) + \tau(H44C24C23O20) (24) + \tau(H45C24C23O20) (10) +$
				τ(H46C24C23O20) (10)
271	263	256vw		τ (H39C22C21O19) (24) + τ (H40C22C21O19) (10) + τ (H41C22C21O19)
				$(10) + \tau$ (H44C24C23O20) (24) + τ (H45C24C23O20) (10) +
				τ (H46C24C23O20) (10)
250	243	249vw		$\delta(018C9C10)(14) + \delta(C7C8C9)(15) + \delta(C9C10C11)(15)$
245	245	226000		$\delta(C(C_{5}C_{7}))(12) + \delta(C_{1}(C_{1})(13)) + \delta(C_{5}C_{1})(13) + \delta(C_{5}C_{1})(13)$
245	230	230VW		$=(C_2C_2C_1C_1C_1C_1C_1C_1C_1C_1C_1C_1C_1C_1C_1C$
221	214	217VW		$(C_{5}C_{2}C_{1}C_{0})(11) + (C_{1}C_{1}C_{1}C_{1}C_{1}C_{1})(12)$
218	212	204VW		t(C/C8C9C10)(12) + t(C8C9C10C11)(16)
194	189	184vw		$\tau(C7C8C9C10)(15) + \tau(C5C7C8C9)(20) + \tau(C8C9C10C11)(19) +$
				τ (C9C10C11C12) (15)
170	165	176vw		$\delta(019C15C16)(10) + \delta(020C2C3)(10) + \delta(C21019C15)(20) +$
				δ(C23O20C2) (20)
151	147	153vw		$\delta(C7C8C9)(10) + \delta(C9C10C11)(10)$
128	125	138vw		$\delta(C21019C15)(16) + \delta(C23020C2)(16)$
126	123	122vw		$\tau(C21019C15C14)(32) + \tau(C23020C2C1)(32)$
126	123	12210		$\tau(C_{21}C_{19}C_{15}C_{14})(35) + \tau(C_{23}C_{20}C_{2}C_{1})(35)$
104	101	103w/106w		$\tau(C7C8C9C10)(11) + \tau(C6C5C7C8)(10) + \tau(C8C9C10C11)(12) +$
104	101	103w/100w		$(C^{2}C^{2}C^{2}C^{1}O^{1}O^{1}) + (C^{2}C^{2}C^{2}O^{2}O^{2}O^{2}O^{2}) + (C^{2}C^{2}C^{2}O^{2}O^{2}O^{2}) + (C^{2}C^{2}C^{2}O^{2}O^{2}O^{2}) + (C^{2}C^{2}C^{2}O^{2}O^{2}O^{2}) + (C^{2}C^{2}C^{2}O^{2}O^{2}O^{2}) + (C^{2}C^{2}O^{2}O^{2}O^{2}O^{2}) + (C^{2}C^{2}O^{2}O^{2}O^{2}O^{2}) + (C^{2}C^{2}O^{2}O^{2}O^{2}O^{2}) + (C^{2}C^{2}O^{2}O^{2}O^{2}O^{2}) + (C^{2}C^{2}O^{2}O^{2}O^{2}O^{2}) + (C^{2}C^{2}O^{2}O^{2}O^{2}O^{2}O^{2}) + (C^{2}C^{2}O^{2}O^{2}O^{2}O^{2}) + (C^{2}C^{2}O^{2}O^{2}O^{2}O^{2}) + (C^{2}C^{2}O^{2}O^{2}O^{2}O^{2}) + (C^{2}C^{2}O^{2}O^{2}O^{2}O^{2}O^{2}) + (C^{2}C^{2}O^{2}O^{2}O^{2}O^{2}O^{2}O^{2}) + (C^{2}C^{2}O^{2}O^{2}O^{2}O^{2}O^{2}O^{2}) + (C^{2}C^{2}O^{2}O^{2}O^{2}O^{2}O^{2}O^{2}) + (C^{2}C^{2}O^{2}O^{2}O^{2}O^{2}O^{2}O^{2}) + (C^{2}C^{2}O^{2}O^{2}O^{2}O^{2}O^{2}O^{2}O^{2}O$
0.0	0.4	0.4		t(22221019215)(12) + t(22422502022)(12)
80	84	84W		t(22221019C15)(19) + t(22422502022)(19)
84	82			$\tau(C10C11C12C13)(13) + \tau(C6C5C/C8)(14) + \tau(C5C/C8C9)(20) +$
				τ (C9C10C11C12) (18)
76	73	65w		$\delta(C10C11C12) (15) + \delta(C6C5C7) (15) + \delta(C5C7C8) (16) + \delta(C11C12C17)$
				(15)
53	51			$\tau(C7C8C9C10)(10) + \tau(C8C9C10C11)(10) + \tau(C22C21019C15)(14) +$
				τ(C24C23O20C2) (14)
39	38	38w		τ (C1C6C5C7) (16) + τ (C5C7C8C9) (13) + τ (C9C10C11C12) (12) +
	20	20		v(C11C13C17C12) (12)
27	26			$\tau(C10C11C12C13)(34) + \tau(C6C5C7C8)(33)$
21	20			$x_{(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,$
24	23			$(17) \pm 8(C0C10C11)(18)$
20	10			$(17) \pm 0(09010011)(18)$ = $(070800010)(20) \pm -(010011012012)(17) \pm -(0(050700)(10) \pm -(010010012)(17))$
20	19			$\pi(C/C_{0}C_{0}C_{1})(20) + \pi(C_{1}0C_{1})(12C_{1}C_{1})(17) + \pi(C_{0}C_{0}C_{1})(16) + (C_{0}C_{0}C_{1})(16) + (C_{0}C_{1})(16) + (C_{0}C_{1})(1$
				$\pi(-8C9C10C11)(19)$

Table S2. Calculated vibrational wavenumbers (in cm⁻¹) unscaled and scaled by the scale factor 0.9702 (ω <1800) and 0.9440 (ω ≥1800), experimental Raman and infrared bands positions in units of cm⁻¹ and assignment of vibrational modes for DB ethoxy in a monohydrated model.

Wcalc	Wscal	WRaman	Wir	Assignment of the molecular vibrations with PED (%)				
3860	3644			v(O47H49) (96)				
3636	3432			v(O47H48) (95)				
3227	3047			v(C1H25) (96)				
3227	3046	3063vw		v(C14H34) (95)				
3214	3034		3037vw	v(C3H26)(76) + v(C4H27)(23)				
3213	3033	3034vw		v(C16H35)(79) + v(C17H36)(20)				
3197	3018			v(C3H26)(22) + v(C4H27)(69)				
3194	3015			v(C16H35)(20) + v(C17H36)(74)				
3189	3011	3012vw		v(C13H33) (94)				
3185	3007			v(C6H28) (92)				
3182	3004			v(C8H30)(69) + v(C10H31)(18)				
3171	2994			v(C8H30)(19) + v(C10H31)(67) + v(C11H32)(10)				
3163	2986			v(C7H29) (96)				
3159	2982	2977vw	2985vw	v(C10H31)(10) + v(C11H32)(87)				
3141	2965		2976vw	v(C24H45)(49) + v(C24H46)(49) v(C22H40)(49) + v(C22H41)(48)				
3140	2964			v(C22H40)(49) + v(C22H41)(48)				
3135	2959			v(C24H44)(62) + v(C24H45)(18) + v(C24H46)(19)				
3134	2959	2936vw	2935vw	v(C22H39)(62) + v(C22H40)(18) + v(C22H41)(19)				
3059	2887			v(C24H44)(37) + v(C24H45)(31) + v(C24H46)(31)				
3058	2887	2881vw		v(C22H39)(37) + v(C22H40)(31) + v(C22H41)(31)				
3053	2882		2885vw	v(C21H37)(48) + v(C21H38)(50)				
3053	2882			v(C23H42)(49) + v(C23H43)(48)				
3012	2843	2862vw		v(C21H37)(51) + v(C21H38)(48)				
3012	2843			v(C23H42)(49) + v(C23H43)(50)				
1729	1678			v(O18C9) (38) + v(C7C8) (16) + v(C10C11) (15)				
1703	1652	1643w	1640vs	δ(H49O47H48) (88)				
1679	1629		1620vw	v(C7C8)(17) + v(C10C11)(16)				
1668	1619	1620s		v(C4C3)(14) + v(C17C16)(14)				
1654	1605	1603m	1601vs	v(C7C8)(11) + v(C17C16)(10)				
1625	1577	1584s	1583s	v(O18C9) (33)				
1612	1564	1569vs	1568vs	v(C2C1)(20) + v(C6C5)(11)				
1611	1563	1556w		v(C15C14) (17)				
1560	1513			δ (H33C13C14) (13) + δ (H34C14C15) (11) + δ (H35C16C17) (10) + δ (H36C17C16) (12) + δ (H38C21H37) (14)				
1559	1513	1515vw	1510vs	δ (H25C1C2) (11) + δ (H26C3C4) (11) + δ (H27C4C5) (12) + δ (H28C6C1) (12) + δ (H43C23H42) (15) + δ (C3C2C1) (10)				
1534	1489			$\delta(H38C21H37)(43) + \delta(H43C23H42)(21)$				
1534	1488	1497vw	1477w	$\delta(H38C21H37)(21) + \delta(H43C23H42)(41)$				
1515	1470			$\delta(\text{H41C22H40}) (51) + \tau(\text{H40C22C21O19}) (10) + \tau(\text{H41C22C21O19}) (10)$				
1515	1470	1475vw	1469vw	$\delta(\text{H46C24H45}) (51) + \tau(\text{H45C24C23O20}) (10) + \tau(\text{H46C24C23O20}) (10)$				
1499	1454			$\delta(\text{H39C22H41}) (38) + \delta(\text{H40C22H39}) (38) + \tau(\text{H39C22C21O19}) (14)$				
1499	1454	1459vw		$\delta(\text{H44C24H46}) (38) + \delta(\text{H45C24H44}) (38) + \tau(\text{H44C24C23O20}) (14)$				
1473	1429	1425w	1425m	$v(C17C16)(22) + v(C14C13)(18) + \delta(H34C14C15)(13)$				
1471	1427			$v(C4C3) (23) + v(C1C6) (20) + \delta(H25C1C2) (14)$				
1440	1397			$\delta(\text{H44C24H46}) (16) + \delta(\text{H45C24H44}) (16) + \tau(\text{H43C23O20C2}) (16)$				
1440	1397	1396vw	1396w	$\delta(\text{H39C22H41}) (16) + \delta(\text{H40C22H39}) (16) + \tau(\text{H38C21019C15}) (16)$				
1411	1368			δ (H39C22H41) (14) + δ (H40C22H39) (14) + δ (H41C22H40) (10) + τ(H37C21O19C15) (11) + τ(H38C21O19C15) (19)				
1410	1368			δ (H44C24H46) (14) + δ (H45C24H44) (14) + δ (H46C24H45) (11) + τ (H42C23O2OC2) (13) + τ (H43C23O2OC2) (22)				
1401	1359	1351vw	1348vw	δ(H32C11C10) (21)				
1379	1337	1325vw	1333w	$v(C6C5)(10) + \delta(H29C7C8)(13) + \delta(H32C11C10)(17)$				
1363	1322	1311w		δ(H31C10C11) (20)				
1349	1309		1308w	$v(C7C8)(13) + \delta(H29C7C8)(19) + \delta(H30C8C9)(12)$				
1348	1308	1295w		$\delta(H25C1C6)(10) + \delta(H28C6C1)(12) + \delta(H30C8C9)(11)$				
1341	1301			$\delta(H25C1C2)(10) + \delta(H28C6C1)(10)$				
1327	1288		1292m	$\delta(H29C7C8)(12) + \delta(H32C11C10)(11) + \delta(H36C17C16)(13)$				
1315	1276	1272vw		$v(C5C7)(10) + \delta(H31C10C11)(12)$				
1307	1268			δ (H42C23C24) (63) + τ (H42C23O20C2) (12) + τ (H43C23O20C2) (11)				
1307	1268			δ (H37C21C22) (63) + τ (H37C21O19C15) (13) + τ (H38C21O19C15) (11)				
1301	1262			v(C1C6) (16) + v(C3C2) (10) + v(O20C2) (36)				

	1262	1251m	1252vs	2vs = v(C14C13) (18) + v(O19C15) (35)		
1255	1217	1220w	1219vw	$v(C13C12)(17) + v(C11C12)(20) + \delta(H31C10C11)(13) + \delta(H33C13C14)$		
				(10)		
1020	1201	1106	1100-	(10)		
1238	1201	1196W	11908	V(COC5)(15) + V(C5C7)(15) + O(H20C5C4)(10) + O(H29C7C8)(21) + O(H29C7C8)		
				$\delta(H30C8C9)(11)$		
1206	1170	1176m	1169vs	δ (H33C13C14) (19) + δ (H34C14C15) (15) + δ (H35C16C17) (11)		
1203	1167			$\delta(H25C1C2)(15) + \delta(H26C3C4)(10) + \delta(H28C6C1)(22)$		
1187	1151			$\delta(H42C23C24)(24) + \tau(H42C23O20C2)(26)$		
1107	1151	1150		S(U27C21C22)(24) + -(U27C21O10C15)(26)		
110/	1151	1138VW		0(H3/C21C22)(24) + 1(H3/C21019C13)(20)		
1148	1114	1127vw		$\delta(H26C3C4)(14) + \tau(H45C24C23O20)(10) + \tau(H46C24C23O20)(10)$		
1148	1114			δ (H35C16C17) (15) + τ (H40C22C21O19) (12) + τ (H41C22C21O19) (11)		
1141	1107	1113w	1115w	τ (H45C24C23O20) (11) + τ (H46C24C23O20) (11)		
11/1	1107			$\delta(\text{H}_{36}(17C16)(11) + \tau(\text{H}_{40}(22C21019)(10) + \tau(\text{H}_{41}(22C21019)(10))$		
1141	1002	1000	1007	(1130C17C10)(11) + (1140C22C21013)(10) + (1141C22C21013)(10)		
1127	1093	1098vw	1097vw	v(C9C10)(24) + v(C8C9)(25) + o(H30C8C9)(16) + o(H31C10C11)(13)		
1083	1050	1049vw		τ (H32C11C12C13) (82)		
1072	1040		1045s	v(C22C21)(19) + v(C24C23)(22) + v(O19C21)(19) + v(O20C23)(22)		
1072	1040			$v(C^{2}C^{2}1)(2^{2}) + v(C^{2}4C^{2}3)(19) + v(O^{1}9C^{2}1)(2^{2}) + v(O^{2}0C^{2}3)(19)$		
1072	1040		1025	$(U20C7C5C6)(72) + \sigma(U20C9C0C10)(14)$		
1054	1005		1023VW	$(\Pi 29C/CSC0)(72) + 1(\Pi 30C8C9C10)(14)$		
1027	996	996vw	989s	$\delta(C17C16C15)(40) + \delta(H34C14C15)(10) + \delta(C15C14C13)(21) +$		
				δ(C16C15C14) (12)		
1026	995			$\delta(C4C3C2)(35) + \delta(C2C1C6)(19) + \delta(C3C2C1)(11)$		
1002	072	091		y(0,1800)(12) + y(0,0010)(22) + y(0,000)(12) + (0,0010)(12) + (0,0000)(12) + (0,0000)(12) + (0,0000)(12) + (0,0000)(12) + (0,0000)(12) + (0,0000)(12) + (0,0000)(12) + (0,0000)(12) + (0,0000)(12) + (0,0000)(12) + (0,0000)(12) + (0,0000)(12) + (0,0000)(12) + (0,0000)(12) + (0,0000)(12) + (0,0000)(12) + (0,0000)(12) + (0,0000)(12) + (0,0000)(12) + (0		
1002	912	901VW		V(018C9)(12) + V(C9C10)(22) + V(C8C9)(22) + 0(C9C10C11)(10)		
970	941	944vw		τ (H33C13C14C15) (53) + τ (H34C14C15C16) (23)		
964	935			τ (H26C3C4C5) (31) + τ (H27C4C5C6) (44) + τ (C4C3C2C1) (13)		
963	934			τ (H35C16C17C12) (30) + τ (H36C17C16C15) (38) + τ (C17C16C15C14) (14)		
051	023	0241		$\tau(\text{H}25\text{C}1\text{C}2\text{C}3)$ (25) + $\tau(\text{H}28\text{C}6\text{C}5\text{C}7)$ (58)		
951	923	924W		(1125C1C2C5)(25) + (1126C0C5C7)(56)		
942	914			$v(C24C23)(27) + v(O20C23)(15) + \tau(H45C24C23O20)(10) +$		
				τ(H46C24C23O20) (10)		
942	914	909vw	922w	$v(C22C21)(27) + v(O19C21)(15) + \tau(H40C22C21O19)(10) +$		
, . <u> </u>	<i></i>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/	$\tau(\Psi_{1}(C_{2}(C_{2}(C_{1})))) = \tau(U_{1}(C_{2}(C_{2}(C_{1})))) = \tau(U_{1}(C_{2}(C_{1}))) = \tau(U_{1}(C_{1})) = \tau(U_{1}(C$		
000	0.50	0.50	001	(H41C22C21019)(10)		
906	879	878vw	881w	τ (H30C8C9C10) (33) + τ (H31C10C11C12) (38) + γ (O18C8C10C9) (13)		
890	864			$\delta(C16C15C14)(11)$		
869	843			τ (H30C8C9C10)(18) + τ (H31C10C11C12)(26)		
865	820	957m		$S(C^2C^2C^2(1))(12)$		
005	039	837W		0(CSC2C1)(13)		
852	827	830vw	835m	$\tau(H2/C4C5C6)(16) + \tau(H30C8C9C10)(12) + \tau(H31C10C9C8)(13) +$		
				$\tau(H36C17C16C15)$ (15)		
843	818		812m	τ (H44C24C23O20) (10)		
830	814		012	$\tau(\text{H}^{2}\text{C}^{2}\text{C}^{2}\text{C}^{2})(15) + \tau(\text{H}^{2}\text{C}^{2}\text{C}^{2}\text{C}^{2})(10) + \tau(\text{H}^{2}\text{C}^{2}\text{C}^{1}\text{C}^{1})(12) + \tau(\text{H}^{2}\text{C}^{2}\text{C}^{2})(12) + \tau(\text{H}^{2}\text{C}^{2}\text{C}^{2})(12) + \tau(\text{H}^{2}\text{C}^{2})(12) + \tau(\text{H}^{2})(12) + \tau(\text{H}^{2})(12$		
039	014			(1120(3)(12) + (1127(4)(3)(10) + (113)(10)(10) + (113)(10)(17)(12)(13) + (112)(13)(13) + (112)(13)(13)(13)(13)(13))		
				$\tau(H36C1/C16C15)(10)$		
837	812	813vw		τ (H26C3C4C5) (17) + τ (H27C4C5C6) (14) + τ (H35C16C17C12) (19) +		
				τ(H36C17C16C15) (17)		
820	796	806vw	789w	τ (H33C13C14C15)(14) + τ (H34C14C15C16)(34)		
016	702	000111	10511	=(1124C14C15C16)(26) + =(1122C12C12C12C11)(19)		
010	192			(1034C14C15C10)(50) + (1055C15C12C11)(18)		
816	791	791vw		$\tau(H25C1C2C3)(36) + \tau(H28C6C5C7)(18)$		
700	766			δ(C14C13C12) (10)		
190	/66	776vw				
751	766	776vw 737vw		$\tau(C2C1C6C5)(14) + \gamma(O18C8C10C9)(21)$		
751 726	766 728 704	776vw 737vw 719vw		$\tau(C2C1C6C5) (14) + \gamma(O18C8C10C9) (21)$ $\tau(C2C1C6C5) (18) + \tau(C15C14C13C12) (12)$		
751 726	766 728 704	776vw 737vw 719vw 704		τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + $τ$ (C15C14C13C12) (12) τ(C2C1C6C5) (18) + $τ$ (C15C14C13C12) (12)		
751 726 722	766 728 704 700	776vw 737vw 719vw 704vw		τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + $τ$ (C15C14C13C12) (12) δ(O18C9C10) (17) + $δ$ (C16C15C14) (10)		
750 751 726 722 701	704 700 680	776vw 737vw 719vw 704vw 679vw		$\begin{aligned} \tau(\text{C2C1C6C5}) & (14) + \gamma(\text{O18C8C10C9}) & (21) \\ \tau(\text{C2C1C6C5}) & (18) + \tau(\text{C15C14C13C12}) & (12) \\ \delta(\text{O18C9C10}) & (17) + \delta(\text{C16C15C14}) & (10) \\ \delta(\text{O47H48O18}) & (34) + \delta(\text{H48O18C9}) & (13) + \delta(\text{O18C9C10}) & (10) + \end{aligned}$		
750 751 726 722 701	766 728 704 700 680	776vw 737vw 719vw 704vw 679vw		τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + $τ$ (C15C14C13C12) (12) δ(O18C9C10) (17) + $δ$ (C16C15C14) (10) δ(O47H48O18) (34) + $δ$ (H48O18C9) (13) + $δ$ (O18C9C10) (10) + τ(H49O47H48O18) (19)		
750 751 726 722 701	766 728 704 700 680	776vw 737vw 719vw 704vw 679vw	661vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + $τ$ (C15C14C13C12) (12) δ(O18C9C10) (17) + $δ$ (C16C15C14) (10) δ(O47H48O18) (34) + $δ$ (H48O18C9) (13) + $δ$ (O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37)		
750 751 726 722 701 692	766 728 704 700 680 672	776vw 737vw 719vw 704vw 679vw 664vw	661vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + $τ$ (C15C14C13C12) (12) δ(O18C9C10) (17) + $δ$ (C16C15C14) (10) δ(O47H48O18) (34) + $δ$ (H48O18C9) (13) + $δ$ (O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) S(C4C9C2) (11) + S (C1C(C5) (14) + S (C2C1CC) (21)		
 750 751 726 722 701 692 652 652 	766 728 704 700 680 672 633	776vw 737vw 719vw 704vw 679vw 664vw 638w	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + $τ$ (C15C14C13C12) (12) δ(O18C9C10) (17) + $δ$ (C16C15C14) (10) δ(O47H48O18) (34) + $δ$ (H48O18C9) (13) + $δ$ (O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + $δ$ (C1C6C5) (14) + $δ$ (C2C1C6) (21) δ(C4C3C2) (11) + $δ$ (C1C6C5) (14) + $δ$ (C2C1C6) (21)		
 750 751 726 722 701 692 652 651 	766 728 704 700 680 672 633 631	776vw 737vw 719vw 704vw 679vw 664vw 638w 625vw	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + τ(C15C14C13C12) (12) δ(O18C9C10) (17) + δ(C16C15C14) (10) δ(O47H48O18) (34) + δ(H48O18C9) (13) + δ(O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + δ(C1C6C5) (14) + δ(C2C1C6) (21) δ(C2C1C6) (10) + δ(C15C14C13) (20)		
 750 751 726 722 701 692 652 651 595 	766 728 704 700 680 672 633 631 577	776vw 737vw 719vw 679vw 664vw 638w 625vw 578vw/593w	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + $τ$ (C15C14C13C12) (12) δ(O18C9C10) (17) + $δ$ (C16C15C14) (10) δ(O47H48O18) (34) + $δ$ (H48O18C9) (13) + $δ$ (O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + $δ$ (C1C6C5) (14) + $δ$ (C2C1C6) (21) δ(C2C1C6) (10) + $δ$ (C15C14C13) (20) δ(C1C6C5) (11)		
750 751 726 722 701 692 652 651 595 574	766 728 704 700 680 672 633 631 577 557	776vw 737vw 719vw 704vw 679vw 664vw 638w 625vw 578vw/593w 554vw/596vw	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + $τ$ (C15C14C13C12) (12) δ(O18C9C10) (17) + $δ$ (C16C15C14) (10) δ(O47H48O18) (34) + $δ$ (H48O18C9) (13) + $δ$ (O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + $δ$ (C1C6C5) (14) + $δ$ (C2C1C6) (21) δ(C2C1C6) (10) + $δ$ (C15C14C13) (20) δ(C1C6C5) (11) δ(O18C9C10) (20) + $δ$ (C1C6C5) (11) + $δ$ (C14C13C12) (10)		
750 751 726 722 701 692 652 651 595 574 535	766 728 704 700 680 672 633 631 577 557 519	776vw 737vw 719vw 704vw 679vw 664vw 638w 625vw 578vw/593w 554vw/566vw	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + τ(C15C14C13C12) (12) δ(O18C9C10) (17) + δ(C16C15C14) (10) δ(O47H48O18) (34) + δ(H48O18C9) (13) + δ(O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + δ(C1C6C5) (14) + δ(C2C1C6) (21) δ(C2C1C6) (10) + δ(C15C14C13) (20) δ(C1C6C5) (11) δ(O18C9C10) (20) + δ(C1C6C5) (11) + δ(C14C13C12) (10) x(O19C14C16C15) (19)		
 750 751 726 722 701 692 652 651 595 574 535 525 	766 728 704 700 680 672 633 631 577 557 519	776vw 737vw 719vw 704vw 679vw 664vw 638w 625vw 578vw/593w 554vw/566vw	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + τ(C15C14C13C12) (12) δ(O18C9C10) (17) + δ(C16C15C14) (10) δ(O47H48O18) (34) + δ(H48O18C9) (13) + δ(O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + δ(C1C6C5) (14) + δ(C2C1C6) (21) δ(C2C1C6) (10) + δ(C15C14C13) (20) δ(C1C6C5) (11) δ(O18C9C10) (20) + δ(C1C6C5) (11) + δ(C14C13C12) (10) γ(O19C14C16C15) (19) $S(C9C10214) (20)$		
751 726 722 701 692 652 651 595 574 535 535	 766 728 704 700 680 672 633 631 577 557 519 519 	776vw 737vw 719vw 679vw 664vw 638w 625vw 578vw/593w 554vw/566vw 539w	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + τ(C15C14C13C12) (12) δ(O18C9C10) (17) + δ(C16C15C14) (10) δ(O47H48O18) (34) + δ(H48O18C9) (13) + δ(O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + δ(C1C6C5) (14) + δ(C2C1C6) (21) δ(C2C1C6) (10) + δ(C15C14C13) (20) δ(C1C6C5) (11) δ(O18C9C10) (20) + δ(C1C6C5) (11) + δ(C14C13C12) (10) γ(O19C14C16C15) (19) δ(C8C9C10) (26)		
751 726 722 701 692 652 651 595 574 535 535 528	 766 728 704 700 680 672 633 631 577 557 519 519 513 	776vw 737vw 719vw 679vw 664vw 638w 625vw 578vw/593w 554vw/566vw 539w 516vw	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + τ(C15C14C13C12) (12) δ(O18C9C10) (17) + δ(C16C15C14) (10) δ(O47H48O18) (34) + δ(H48O18C9) (13) + δ(O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + δ(C1C6C5) (14) + δ(C2C1C6) (21) δ(C2C1C6) (10) + δ(C15C14C13) (20) δ(C1C6C5) (11) δ(O18C9C10) (20) + δ(C1C6C5) (11) + δ(C14C13C12) (10) γ(O19C14C16C15) (19) δ(C8C9C10) (26) γ(O20C1C3C2) (20)		
751 726 722 701 692 652 651 595 574 535 535 528 444	766 728 704 700 680 672 633 631 577 557 519 519 519 513 431	776vw 737vw 719vw 704vw 679vw 664vw 638w 625vw 578vw/593w 554vw/566vw 539w 516vw 438vw	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + τ(C15C14C13C12) (12) δ(O18C9C10) (17) + δ(C16C15C14) (10) δ(O47H48O18) (34) + δ(H48O18C9) (13) + δ(O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + δ(C1C6C5) (14) + δ(C2C1C6) (21) δ(C2C1C6) (10) + δ(C15C14C13) (20) δ(C1C6C5) (11) δ(O18C9C10) (20) + δ(C1C6C5) (11) + δ(C14C13C12) (10) γ(O19C14C16C15) (19) δ(C8C9C10) (26) γ(O20C1C3C2) (20) δ(C6C5C7) (14) + δ(O19C15C16) (12)		
751 726 722 701 692 652 651 595 574 535 535 535 528 444 436	 766 728 704 700 680 672 633 631 577 557 519 513 431 423 	776vw 737vw 719vw 604vw 679vw 664vw 638w 625vw 578vw/593w 554vw/566vw 539w 516vw 438vw	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + τ(C15C14C13C12) (12) δ(O18C9C10) (17) + δ(C16C15C14) (10) δ(O47H48O18) (34) + δ(H48O18C9) (13) + δ(O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + δ(C1C6C5) (14) + δ(C2C1C6) (21) δ(C2C1C6) (10) + δ(C15C14C13) (20) δ(C1C6C5) (11) δ(O18C9C10) (20) + δ(C1C6C5) (11) + δ(C14C13C12) (10) γ(O19C14C16C15) (19) δ(C8C9C10) (26) γ(O20C1C3C2) (20) δ(C6C5C7) (14) + δ(O19C15C16) (12) δ(C2C2C3) (33) + δ(C23O20C2) (15)		
751 726 722 701 692 652 651 595 574 535 535 528 444 436 434	 766 728 700 680 672 633 631 577 557 519 513 431 423 423 	776vw 737vw 719vw 704vw 679vw 664vw 638w 625vw 578vw/593w 554vw/566vw 539w 516vw 438vw	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + $τ$ (C15C14C13C12) (12) δ(O18C9C10) (17) + $δ$ (C16C15C14) (10) δ(O47H48O18) (34) + $δ$ (H48O18C9) (13) + $δ$ (O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + $δ$ (C1C6C5) (14) + $δ$ (C2C1C6) (21) δ(C2C1C6) (10) + $δ$ (C15C14C13) (20) δ(C1C6C5) (11) δ(O18C9C10) (20) + $δ$ (C1C6C5) (11) + $δ$ (C14C13C12) (10) γ(O19C14C16C15) (19) δ(C8C9C10) (26) γ(O20C1C3C2) (20) δ(C6C5C7) (14) + $δ$ (O19C15C16) (12) δ(O20C2C3) (33) + $δ$ (C23O20C2) (15) δ(O19C15C16) (22) + $δ$ (C21O19C15) (17)		
751 726 722 701 692 652 651 595 574 535 535 535 528 444 436 434	766 728 700 680 672 633 631 577 519 519 513 431 423 421	776vw 737vw 719vw 704vw 679vw 664vw 638w 625vw 578vw/593w 554vw/566vw 539w 516vw 438vw	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + τ(C15C14C13C12) (12) δ(O18C9C10) (17) + δ(C16C15C14) (10) δ(O47H48O18) (34) + δ(H48O18C9) (13) + δ(O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + δ(C1C6C5) (14) + δ(C2C1C6) (21) δ(C2C1C6) (10) + δ(C15C14C13) (20) δ(C1C6C5) (11) δ(O18C9C10) (20) + δ(C1C6C5) (11) + δ(C14C13C12) (10) γ(O19C14C16C15) (19) δ(C8C9C10) (26) γ(O20C1C3C2) (20) δ(C6C5C7) (14) + δ(O19C15C16) (12) δ(O19C15C16) (22) + δ(C21O19C15) (17)		
751 726 722 701 692 652 651 595 574 535 535 535 528 444 436 434 428	 766 728 704 700 680 672 633 631 577 519 519 519 513 431 423 421 415 	776vw 737vw 719vw 704vw 679vw 664vw 638w 625vw 578vw/593w 554vw/566vw 539w 516vw 438vw 420vw 414vw	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + τ(C15C14C13C12) (12) δ(O18C9C10) (17) + δ(C16C15C14) (10) δ(O47H48O18) (34) + δ(H48O18C9) (13) + δ(O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + δ(C1C6C5) (14) + δ(C2C1C6) (21) δ(C2C1C6) (10) + δ(C15C14C13) (20) δ(C1C6C5) (11) δ(O18C9C10) (20) + δ(C1C6C5) (11) + δ(C14C13C12) (10) γ(O19C14C16C15) (19) δ(C8C9C10) (26) γ(O20C1C3C2) (20) δ(C6C5C7) (14) + δ(O19C15C16) (12) δ(O20C2C3) (33) + δ(C23O20C2) (15) δ(O19C15C16) (22) + δ(C21O19C15) (17) τ(H36C17C16C15) (10) + τ(C17C16C15C14) (11) + τ(C15C14C13C12) (40)		
751 726 722 701 692 652 651 595 574 535 528 444 436 434 428 426	 766 728 704 700 680 672 633 631 577 557 519 513 431 423 421 415 414 	776vw 737vw 719vw 704vw 679vw 664vw 638w 625vw 578vw/593w 554vw/566vw 539w 516vw 438vw 420vw 414vw 403w	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + τ(C15C14C13C12) (12) δ(O18C9C10) (17) + δ(C16C15C14) (10) δ(O47H48O18) (34) + δ(H48O18C9) (13) + δ(O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + δ(C1C6C5) (14) + δ(C2C1C6) (21) δ(C2C1C6) (10) + δ(C15C14C13) (20) δ(C1C6C5) (11) δ(O18C9C10) (20) + δ(C1C6C5) (11) + δ(C14C13C12) (10) γ(O19C14C16C15) (19) δ(C8C9C10) (26) γ(O20C1C3C2) (20) δ(C6C5C7) (14) + δ(O19C15C16) (12) δ(O20C2C3) (33) + δ(C23O20C2) (15) δ(O19C15C16) (22) + δ(C21O19C15) (17) τ(H36C17C16C15) (10) + τ(C17C16C15C14) (11) + τ(C15C14C13C12) (40) τ(C4C3C2C1) (20) + τ(C2C1C6C5) (28) + τ(C3C2C1C6) (18)		
751 726 722 701 692 652 651 595 574 535 535 528 444 436 434 428 426 388	 766 728 704 700 680 672 633 631 577 557 519 519 513 431 423 421 415 414 377 	776vw 737vw 719vw 704vw 679vw 664vw 638w 625vw 578vw/593w 554vw/566vw 539w 516vw 438vw 420vw 414vw 403w 384vw	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + τ(C15C14C13C12) (12) δ(O18C9C10) (17) + δ(C16C15C14) (10) δ(O47H48O18) (34) + δ(H48O18C9) (13) + δ(O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + δ(C1C6C5) (14) + δ(C2C1C6) (21) δ(C2C1C6) (10) + δ(C15C14C13) (20) δ(C1C6C5) (11) δ(O18C9C10) (20) + δ(C1C6C5) (11) + δ(C14C13C12) (10) γ(O19C14C16C15) (19) δ(C8C9C10) (26) γ(O20C1C3C2) (20) δ(C6C5C7) (14) + δ(O19C15C16) (12) δ(O20C2C3) (33) + δ(C23O20C2) (15) δ(O19C15C16) (22) + δ(C21019C15) (17) τ(H36C17C16C15) (10) + τ(C17C16C15C14) (11) + τ(C15C14C13C12) (40) τ(C4C3C2C1) (20) + τ(C2C1C6C5) (28) + τ(C3C2C1C6) (18) τ(C17C16C15C14) (23) + τ(C9C10C11C12) (13) + γ(O19C14C16C15) (14) +		
751 726 722 701 692 652 651 595 574 535 535 535 535 528 444 436 434 428 426 388	 766 728 704 700 680 672 633 631 577 519 519 519 519 513 431 423 421 415 414 377 	776vw 737vw 719vw 704vw 679vw 664vw 638w 625vw 578vw/593w 554vw/566vw 539w 516vw 438vw 420vw 414vw 403w 384vw	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + τ(C15C14C13C12) (12) δ(O18C9C10) (17) + δ(C16C15C14) (10) δ(O47H48O18) (34) + δ(H48O18C9) (13) + δ(O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + δ(C1C6C5) (14) + δ(C2C1C6) (21) δ(C2C1C6) (10) + δ(C15C14C13) (20) δ(C1C6C5) (11) δ(O18C9C10) (20) + δ(C1C6C5) (11) + δ(C14C13C12) (10) γ(O19C14C16C15) (19) δ(C8C9C10) (26) γ(O20C1C3C2) (20) δ(C6C5C7) (14) + δ(O19C15C16) (12) δ(O19C15C16) (22) + δ(C21019C15) (17) τ(H36C17C16C15) (10) + τ(C17C16C15C14) (11) + τ(C15C14C13C12) (40) τ(C4C3C2C1) (20) + τ(C2C1C6C5) (28) + τ(C3C2C1C6) (18) τ(C17C16C15C14) (23) + τ(C9C10C11C12) (13) + γ(O19C14C16C15) (14) +		
751 726 722 701 692 652 651 595 574 535 535 535 528 444 436 434 428 426 388	 766 728 704 700 680 672 633 631 577 519 519 513 431 423 421 415 414 377 270 	776vw 737vw 719vw 704vw 679vw 664vw 638w 625vw 578vw/593w 554vw/566vw 539w 516vw 438vw 420vw 414vw 403w 384vw	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + τ(C15C14C13C12) (12) δ(O18C9C10) (17) + δ(C16C15C14) (10) δ(O47H48O18) (34) + δ(H48O18C9) (13) + δ(O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + δ(C1C6C5) (14) + δ(C2C1C6) (21) δ(C2C1C6) (10) + δ(C15C14C13) (20) δ(C1C6C5) (11) δ(O18C9C10) (20) + δ(C1C6C5) (11) + δ(C14C13C12) (10) γ(O19C14C16C15) (19) δ(C8C9C10) (26) γ(O20C1C3C2) (20) δ(C6C5C7) (14) + δ(O19C15C16) (12) δ(O20C2C3) (33) + δ(C23020C2) (15) δ(O19C15C16) (22) + δ(C21019C15) (17) τ(H36C17C16C15) (10) + τ(C17C16C15C14) (11) + τ(C15C14C13C12) (40) τ(C4C3C2C1) (20) + τ(C2C1C6C5) (28) + τ(C3C2C1C6) (18) τ(C17C16C15C14) (23) + τ(C9C10C11C12) (13) + γ(O19C14C16C15) (14) + γ(C11C13C17C12) (19)		
751 726 722 701 692 652 651 595 574 535 535 528 444 436 434 428 426 388 382	 766 728 704 700 680 672 633 631 577 557 519 513 431 423 421 415 414 377 370 	776vw 737vw 719vw 704vw 679vw 664vw 638w 625vw 578vw/593w 554vw/566vw 539w 516vw 438vw 438vw 420vw 414vw 403w 384vw	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + τ(C15C14C13C12) (12) δ(O18C9C10) (17) + δ(C16C15C14) (10) δ(O47H48O18) (34) + δ(H48O18C9) (13) + δ(O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + δ(C1C6C5) (14) + δ(C2C1C6) (21) δ(C2C1C6) (10) + δ(C15C14C13) (20) δ(C1C6C5) (11) δ(O18C9C10) (20) + δ(C1C6C5) (11) + δ(C14C13C12) (10) γ(O19C14C16C15) (19) δ(C8C9C10) (26) γ(O20C1C3C2) (20) δ(C6C5C7) (14) + δ(O19C15C16) (12) δ(O20C2C3) (33) + δ(C23O20C2) (15) δ(O19C15C16) (22) + δ(C21019C15) (17) τ(H36C17C16C15) (10) + τ(C27C16C15C14) (11) + τ(C15C14C13C12) (40) τ(C4C3C2C1) (20) + τ(C2C1C6C5) (28) + τ(C3C2C1C6) (18) τ(C17C16C15C14) (23) + τ(C9C10C11C12) (13) + γ(O19C14C16C15) (14) + γ(C11C13C17C12) (19) τ(C4C3C2C1) (19) + τ(C1C6C5C7) (28) + τ(C5C7C8C9) (13) +		
751 726 722 701 692 652 651 595 574 535 535 528 444 436 434 428 426 388 382	 766 728 704 700 680 672 633 631 577 519 513 431 423 421 415 414 377 370 	776vw 737vw 719vw 704vw 679vw 664vw 638w 625vw 578vw/593w 554vw/566vw 539w 516vw 438vw 420vw 414vw 403w 384vw 368vw	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + τ(C15C14C13C12) (12) δ(O18C9C10) (17) + δ(C16C15C14) (10) δ(O47H48O18) (34) + δ(H48O18C9) (13) + δ(O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + δ(C1C6C5) (14) + δ(C2C1C6) (21) δ(C2C1C6) (10) + δ(C15C14C13) (20) δ(C1C6C5) (11) δ(O18C9C10) (20) + δ(C1C6C5) (11) + δ(C14C13C12) (10) γ(O19C14C16C15) (19) δ(C8C9C10) (26) γ(O20C1C3C2) (20) δ(C6C5C7) (14) + δ(O19C15C16) (12) δ(O19C15C16) (22) + δ(C21019C15) (17) τ(H36C17C16C15) (10) + τ(C17C16C15C14) (11) + τ(C15C14C13C12) (40) τ(C4C3C2C1) (20) + τ(C2C1C6C5) (28) + τ(C3C2C1C6) (18) τ(C17C16C15C14) (23) + τ(C9C10C11C12) (13) + γ(O19C14C16C15) (14) + γ(C11C13C17C12) (19) + τ(C1C6C5C7) (28) + τ(C5C7C8C9) (13) + γ(O20C1C3C2) (20)		
751 726 722 701 692 652 651 595 574 535 535 535 535 535 535 535 538 444 436 434 428 426 388 382 362	 766 728 704 700 680 672 633 631 577 519 519 513 431 423 421 415 414 377 370 351 	776vw 737vw 719vw 704vw 679vw 664vw 638w 625vw 578vw/593w 554vw/566vw 539w 516vw 438vw 420vw 414vw 403w 384vw 368vw 353vw	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + τ(C15C14C13C12) (12) δ(O18C9C10) (17) + δ(C16C15C14) (10) δ(O47H48O18) (34) + δ(H48O18C9) (13) + δ(O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + δ(C1C6C5) (14) + δ(C2C1C6) (21) δ(C2C1C6) (10) + δ(C15C14C13) (20) δ(C1C6C5) (11) δ(O18C9C10) (20) + δ(C1C6C5) (11) + δ(C14C13C12) (10) γ(O19C14C16C15) (19) δ(C8C9C10) (26) γ(O20C1C3C2) (20) δ(C6C5C7) (14) + δ(O19C15C16) (12) δ(O20C2C3) (33) + δ(C23O20C2) (15) δ(O19C15C16) (22) + δ(C21019C15) (17) τ(H36C17C16C15) (10) + τ(C17C16C15C14) (11) + τ(C15C14C13C12) (40) τ(C4C3C2C1) (20) + τ(C2C1C6C5) (28) + τ(C3C2C1C6) (18) τ(C17C16C15C14) (23) + τ(C9C10C11C12) (13) + γ(O19C14C16C15) (14) + γ(C11C13C17C12) (19) τ(C4C3C2C1) (19) + τ(C1C6C5C7) (28) + τ(C5C7C8C9) (13) + γ(O20C1C3C2) (20) δ(C22C20109) (21) + δ(C24C23O20) (20)		
751 726 722 701 692 652 651 595 574 535 535 535 528 444 436 434 428 426 388 382 382 362 335	766 728 704 700 680 672 633 631 577 519 513 431 423 421 415 414 377 370 351 325	776vw 737vw 719vw 704vw 679vw 664vw 638w 625vw 578vw/593w 554vw/566vw 539w 516vw 438vw 420vw 414vw 403w 384vw 368vw 353vw 320vw	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + τ(C15C14C13C12) (12) δ(O18C9C10) (17) + δ(C16C15C14) (10) δ(O47H48O18) (34) + δ(H48O18C9) (13) + δ(O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + δ(C1C6C5) (14) + δ(C2C1C6) (21) δ(C2C1C6) (10) + δ(C15C14C13) (20) δ(C1C6C5) (11) δ(O18C9C10) (20) + δ(C1C6C5) (11) + δ(C14C13C12) (10) γ(O19C14C16C15) (19) δ(C8C9C10) (26) γ(O20C1C3C2) (20) δ(C6C5C7) (14) + δ(O19C15C16) (12) δ(O20C2C3) (33) + δ(C23O20C2) (15) δ(O19C15C16) (22) + δ(C21019C15) (17) τ(H36C17C16C15) (10) + τ(C17C16C15C14) (11) + τ(C15C14C13C12) (40) τ(C4C3C2C1) (20) + τ(C2C1C6C5) (28) + τ(C3C2C1C6) (18) τ(C17C16C15C14) (23) + τ(C9C10C11C12) (13) + γ(O19C14C16C15) (14) + γ(C11C13C17C12) (19) τ(C4C3C2C1) (19) + τ(C1C6C5C7) (28) + τ(C5C7C8C9) (13) + γ(020C1C3C2) (20) δ(C22C1019) (21) + δ(C24C23020) (20) δ(C22C1019) (21) + δ(C24C23020) (20) δ(C42C2C1019) + (19) + τ(C47H48O18C9) (11)		
751 726 722 701 692 652 651 595 574 535 535 528 444 436 434 428 426 388 382 362 335 228	 766 728 700 680 672 633 631 577 557 519 513 431 423 421 415 414 377 370 351 325 219 	776vw 737vw 719vw 704vw 679vw 664vw 638w 625vw 578vw/593w 554vw/566vw 539w 516vw 438vw 438vw 420vw 414vw 403w 384vw 368vw 353vw 320vw	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + τ(C15C14C13C12) (12) δ(O18C9C10) (17) + δ(C16C15C14) (10) δ(O47H48O18) (34) + δ(H48O18C9) (13) + δ(O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + δ(C1C6C5) (14) + δ(C2C1C6) (21) δ(C2C1C6) (10) + δ(C15C14C13) (20) δ(C1C6C5) (11) δ(O18C9C10) (20) + δ(C1C6C5) (11) + δ(C14C13C12) (10) γ(O19C14C16C15) (19) δ(C8C9C10) (26) γ(O20C1C3C2) (20) δ(C6C5C7) (14) + δ(O19C15C16) (12) δ(O20C2C3) (33) + δ(C23O20C2) (15) δ(O19C15C16) (22) + δ(C21O19C15) (17) τ(H36C17C16C15) (10) + τ(C17C16C15C14) (11) + τ(C15C14C13C12) (40) τ(C4C3C2C1) (20) + τ(C2C1C6C5) (28) + τ(C3C2C1C6) (18) τ(C17C16C15C14) (23) + τ(C9C10C11C12) (13) + γ(O19C14C16C15) (14) + γ(O20C1C3C2) (20) δ(C22C210 (19) + τ(C1C6C5C7) (28) + τ(C5C7C8C9) (13) + γ(O20C1C3C2) (20) δ(C22C210 (19) + τ(O471H48018C9) (11) δ(O471H48018) (19) + τ(O471H48018C9) (11)		
751 726 722 701 692 652 651 595 574 535 535 535 535 535 535 528 444 436 434 428 426 388 382 362 335 328	766 728 700 680 672 633 631 577 519 513 431 423 421 415 414 377 370 351 325 318	776vw 737vw 719vw 704vw 679vw 664vw 638w 625vw 578vw/593w 554vw/566vw 539w 516vw 438vw 420vw 414vw 403w 384vw 368vw 353vw 320vw 300vw	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + τ(C15C14C13C12) (12) δ(O18C9C10) (17) + δ(C16C15C14) (10) δ(O47H48018) (34) + δ(H48018C9) (13) + δ(O18C9C10) (10) + τ(H49O47H48018) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + δ(C1C6C5) (14) + δ(C2C1C6) (21) δ(C2C1C6) (10) + δ(C15C14C13) (20) δ(C1C6C5) (11) δ(O18C9C10) (20) + δ(C1C6C5) (11) + δ(C14C13C12) (10) γ(O19C14C16C15) (19) δ(C8C9C10) (26) γ(O20C1C3C2) (20) δ(C6C5C7) (14) + δ(O19C15C16) (12) δ(O20C2C3) (33) + δ(C23020C2) (15) δ(O19C15C16) (22) + δ(C21019C15) (17) τ(H36C17C16C15) (10) + τ(C17C16C15C14) (11) + τ(C15C14C13C12) (40) τ(C4C3C2C1) (20) + τ(C2C1C6C5) (28) + τ(C3C2C1C6) (18) τ(C17C16C15C14) (23) + τ(C9C10C11C12) (13) + γ(O19C14C16C15) (14) + γ(C11C13C17C12) (19) τ(C4C3C2C1) (19) + τ(C1C6C5C7) (28) + τ(C5C7C8C9) (13) + γ(O20C1C3C2) (20) δ(C47H48O18) (19) + τ(O47H48O18C9) (11) δ(O47H48O18) (23) + τ(O47H48O18C9) (12)		
751 726 722 701 692 652 651 595 574 535 535 535 535 535 535 528 444 436 434 428 426 388 382 382 362 335 328 274	766 728 704 700 680 672 633 631 577 519 519 513 431 423 421 415 414 377 370 351 325 318 266	776vw 737vw 719vw 704vw 679vw 664vw 638w 625vw 578vw/593w 554vw/566vw 539w 516vw 438vw 438vw 420vw 414vw 403w 384vw 368vw 353vw 320vw 300vw 279vw	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + τ(C15C14C13C12) (12) δ(O18C9C10) (17) + δ(C16C15C14) (10) δ(O47H48O18) (34) + δ(H48O18C9) (13) + δ(O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + δ(C1C6C5) (14) + δ(C2C1C6) (21) δ(C2C1C6) (10) + δ(C15C14C13) (20) δ(C1C6C5) (11) δ(O18C9C10) (20) + δ(C1C6C5) (11) + δ(C14C13C12) (10) γ(O19C14C16C15) (19) δ(C8C9C10) (26) γ(O20C1C3C2) (20) δ(C6C5C7) (14) + δ(O19C15C16) (12) δ(O19C15C16) (22) + δ(C21019C15) (17) τ(H36C17C16C15) (10) + τ(C17C16C15C14) (11) + τ(C15C14C13C12) (40) τ(C4C3C2C1) (20) + τ(C2C1C6C5) (28) + τ(C3C2C1C6) (18) τ(C17C16C15C14) (23) + τ(C9C10C11C12) (13) + γ(O19C14C16C15) (14) + γ(C11C13C17C12) (19) τ(C4C3C2C1) (19) + τ(C17C6C5C7) (28) + τ(C5C7C8C9) (13) + γ(O20C1C3C2) (20) δ(C22C1O19) (21) + δ(C24C23O20) (20) δ(C47H48O18) (19) + τ(O47H48O18C9) (11) δ(O47H48O18) (23) + τ(C8C9C10C11) (14)		
751 726 722 701 692 652 651 595 574 535 535 528 444 436 434 428 426 388 382 382 362 335 328 274 270	 766 728 704 700 680 672 633 631 577 557 519 519 513 431 423 421 415 414 377 370 351 325 318 266 262 	776vw 737vw 719vw 704vw 679vw 664vw 638w 625vw 578vw/593w 554vw/566vw 539w 516vw 438vw 420vw 414vw 403w 384vw 368vw 353vw 320vw 300vw 279vw 271vw	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + τ(C15C14C13C12) (12) δ(O18C9C10) (17) + δ(C16C15C14) (10) δ(O47H48O18) (34) + δ(H48O18C9) (13) + δ(O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + δ(C1C6C5) (14) + δ(C2C1C6) (21) δ(C2C1C6) (10) + δ(C15C14C13) (20) δ(C1C6C5) (11) δ(O18C9C10) (20) + δ(C1C6C5) (11) + δ(C14C13C12) (10) γ(O19C14C16C15) (19) δ(C8C9C10) (26) γ(O20C1C3C2) (20) δ(C6C5C7) (14) + δ(O19C15C16) (12) δ(O20C2C3) (33) + δ(C23O20C2) (15) δ(O19C15C16) (22) + δ(C21O19C15) (17) τ(H36C17C16C15) (10) + τ(C17C16C15C14) (11) + τ(C15C14C13C12) (40) τ(C4C3C2C1) (20) + τ(C2C1C6C5) (28) + τ(C3C2C1C6) (18) τ(C17C16C15C14) (23) + τ(C9C10C11C12) (13) + γ(O19C14C16C15) (14) + γ(C11C13C17C12) (19) τ(C4C3C2C1) (19) + τ(C17C16C5C7) (28) + τ(C5C7C8C9) (13) + γ(O20C1C3C2) (20) δ(C22C1O19) (21) + δ(C24C23020) (20) δ(O47H48O18) (19) + τ(O47H48O18C9) (11) δ(O47H48O18) (23) + τ(C8C9C10C11) (14) γ(O18H48) (13) + δ(C78C9) (11)		
751 726 722 701 692 652 651 595 574 535 535 528 444 436 434 428 426 388 382 362 335 328 274 270 260	 766 728 700 680 672 633 631 577 519 513 431 423 421 415 414 377 370 351 325 318 266 262 252 	776vw 737vw 719vw 704vw 679vw 664vw 638w 625vw 578vw/593w 554vw/566vw 539w 516vw 438vw 420vw 414vw 403w 384vw 368vw 353vw 320vw 300vw 279vw 271vw	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + τ(C15C14C13C12) (12) δ(O18C9C10) (17) + δ(C16C15C14) (10) δ(O47H48O18) (34) + δ(H48O18C9) (13) + δ(O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + δ(C1C6C5) (14) + δ(C2C1C6) (21) δ(C2C1C6) (10) + δ(C15C14C13) (20) δ(C1C6C5) (11) δ(O18C9C10) (20) + δ(C1C6C5) (11) + δ(C14C13C12) (10) γ(O19C14C16C15) (19) δ(C8C9C10) (26) γ(O20C1C3C2) (20) δ(C6C5C7) (14) + δ(O19C15C16) (12) δ(O20C2C3) (33) + δ(C23O20C2) (15) δ(O19C15C16) (22) + δ(C21019C15) (17) τ(H36C17C16C15) (10) + τ(C17C16C15C14) (11) + τ(C15C14C13C12) (40) τ(C4C3C2C1) (20) + τ(C2C1C6C5) (28) + τ(C3C2C1C6) (18) τ(C17C16C15C14) (23) + τ(C9C10C11C12) (13) + γ(O19C14C16C15) (14) + γ(O20C1C3C2) (20) δ(C22C21019) (21) + δ(C24C23020) (20) δ(C47H48018) (19) + τ(C47H48018C9) (11) δ(O47H48018) (43) + τ(C8C9C10C11) (14) ν(O18H48) (13) + δ(C7C8C9) (11) τ(H44C24C23020) (46) + τ(H45C24C23020) (18) + τ(H46C24C23020) (18)		
751 726 722 701 692 652 651 595 574 535 535 528 444 436 434 428 426 388 382 362 335 328 274 270 260 258	766 728 700 680 672 633 631 577 519 513 431 423 421 415 414 377 370 351 325 318 266 262 251	776vw 737vw 719vw 704vw 679vw 664vw 638w 625vw 578vw/593w 554vw/566vw 539w 516vw 438vw 420vw 414vw 403w 384vw 368vw 368vw 353vw 320vw 300vw 279vw 271vw 256vw	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + τ(C15C14C13C12) (12) δ(O18C9C10) (17) + δ(C16C15C14) (10) δ(O47H48018) (34) + δ(H48018C9) (13) + δ(O18C9C10) (10) + τ(H49047H48018) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + δ(C1C6C5) (14) + δ(C2C1C6) (21) δ(C2C1C6) (10) + δ(C15C14C13) (20) δ(C1C6C5) (11) δ(O18C9C10) (20) + δ(C1C6C5) (11) + δ(C14C13C12) (10) γ(09C14C16C15) (19) δ(C8C9C10) (26) γ(O20C1C3C2) (20) δ(C6C5C7) (14) + δ(O19C15C16) (12) δ(O19C15C16) (22) + δ(C21019C15) (17) τ(H36C17C16C15) (10) + τ(C17C16C15C14) (11) + τ(C15C14C13C12) (40) τ(C4C3C2C1) (20) + τ(C2C1C6C5) (28) + τ(C3C2C1C6) (18) τ(C17C16C15C14) (23) + τ(C9C10C11C12) (13) + γ(O19C14C16C15) (14) + γ(C11C13C17C12) (19) τ(C4C3C2C1) (19) + τ(C1C6C5C7) (28) + τ(C5C7C8C9) (13) + γ(O20C1C3C2) (20) δ(C4C7C16C15) (10) + τ(C17H48O18C9) (11) δ(O47H48O18) (19) + τ(O47H48O18C9) (12) τ(H49O47H48O18) (43) + τ(C8C9C10C11) (14) ν(O18H48) (13) + δ(C7C8C9) (11) τ(H44C24C23O20) (46) + τ(H45C24C23O20) (18) + τ(H46C24C23O20) (18) τ(H36C2C21) (19) (45) + τ(H45C24C23O20) (18) + τ(H41C22C21019) (15)		
751 726 722 701 692 652 651 595 574 535 535 535 535 535 535 535 535 538 444 436 434 428 426 388 382 362 335 328 274 270 260 258 2245	766 728 704 700 680 672 633 631 577 519 519 513 431 423 421 415 414 377 370 351 325 318 266 252 251 230	776vw 737vw 719vw 704vw 679vw 664vw 638w 625vw 578vw/593w 554vw/566vw 539w 516vw 438vw 420vw 414vw 403w 384vw 368vw 353vw 320vw 300vw 279vw 271vw 256vw 249vw	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + τ(C15C14C13C12) (12) δ(O18C9C10) (17) + δ(C16C15C14) (10) δ(O47H48O18) (34) + δ(H48O18C9) (13) + δ(O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + δ(C1C6C5) (14) + δ(C2C1C6) (21) δ(C2C1C6) (10) + δ(C15C14C13) (20) δ(C1C6C5) (11) δ(O18C9C10) (20) + δ(C1C6C5) (11) + δ(C14C13C12) (10) γ(O19C14C16C15) (19) δ(C8C9C10) (26) γ(O20C1C3C2) (20) δ(C6C5C7) (14) + δ(O19C15C16) (12) δ(O19C15C16) (22) + δ(C21019C15) (17) τ(H36C17C16C15) (10) + τ(C17C16C15C14) (11) + τ(C15C14C13C12) (40) τ(C4C3C2C1) (20) + τ(C2C1C6C5) (28) + τ(C3C2C1C6) (18) τ(C17C16C15C14) (23) + τ(C9C10C11C12) (13) + γ(O19C14C16C15) (14) + γ(C11C13C17C12) (19) τ(C4C3C2C1) (19) + τ(C17C6C5C7) (28) + τ(C5C7C8C9) (13) + γ(O20C1C3C2) (20) δ(C22C1019) (21) + δ(C24C23020) (20) δ(C47H48O18) (19) + τ(O47H48O18C9) (11) δ(O47H48O18) (23) + τ(C4C74C23020) (18) + τ(H46C24C23020) (18) τ(H42C4C23020) (46) + τ(H40C22C21019) (15) + τ(H41C22C21019) (16) δ(C65C77) (42) + δ(C14C12C17) (20) + δ(C8C9C1001 (42)) τ(H42C4C23020) (46) + τ(H40C22C21019) (15) + τ(H41C22C21019) (16)		
751 726 722 701 692 652 651 595 574 535 535 535 535 528 444 436 434 428 426 388 382 362 335 328 274 270 260 258 246	766 728 704 700 680 672 633 631 577 519 513 431 423 421 415 414 377 351 325 318 266 252 251 239	776vw 737vw 719vw 704vw 679vw 664vw 638w 625vw 578vw/593w 554vw/566vw 539w 516vw 438vw 420vw 414vw 403w 384vw 368vw 353vw 320vw 300vw 279vw 271vw 256vw 249vw 236vw	661vw 638vw	τ(C2C1C6C5) (14) + γ(O18C8C10C9) (21) τ(C2C1C6C5) (18) + τ(C15C14C13C12) (12) δ(O18C9C10) (17) + δ(C16C15C14) (10) δ(O47H48O18) (34) + δ(H48O18C9) (13) + δ(O18C9C10) (10) + τ(H49O47H48O18) (19) γ(O18C8C10C9) (37) δ(C4C3C2) (11) + δ(C1C6C5) (14) + δ(C2C1C6) (21) δ(C2C1C6) (10) + δ(C15C14C13) (20) δ(C1C6C5) (11) δ(O18C9C10) (20) + δ(C1C6C5) (11) + δ(C14C13C12) (10) γ(O19C14C16C15) (19) δ(C8C9C10) (26) γ(O20C1C3C2) (20) δ(C6C5C7) (14) + δ(O19C15C16) (12) δ(O20C2C3) (33) + δ(C23O20C2) (15) δ(O19C15C16) (22) + δ(C21019C15) (17) τ(H36C17C16C15) (10) + τ(C17C16C15C14) (11) + τ(C15C14C13C12) (40) τ(C4C3C2C1) (20) + τ(C2C1C6C5) (28) + τ(C3C2C1C6) (18) τ(C17C16C15C14) (23) + τ(C9C10C11C12) (13) + γ(O19C14C16C15) (14) + γ(C11C13C17C12) (19) τ(C4C3C2C1) (19) + τ(C1C6C5C7) (28) + τ(C5C7C8C9) (13) + γ(020C1C3C2) (20) δ(C2221019) (21) + δ(C24C23020) (20) δ(C47H48018) (13) + τ(C47H48018C9) (11) δ(O47H48018) (23) + τ(O47H48018C9) (12) τ(H49O47H48018) (43) + τ(C8C9C10C11) (14) ν(O18H48) (13) + δ(C7C8C9) (11) τ(H44C24C23020) (46) + τ(H45C24C23020) (18) + τ(H46C24C23020) (18) τ(H39C22C21019) (45) + τ(H40C22C21019) (15) + τ(H41C22C21019) (16) δ(C6C5C7) (13) + δ(C11C12C17) (20) + δ(C8C9C10) (13)		

203	197	204vw	τ (O47H48O18C9) (17) + τ (C16C15C14C13) (21) + τ (C9C10C11C12) (11)
194	188	184vw	τ (C7C8C9C10) (15) + τ (C5C7C8C9) (16) + τ (C9C10C11C12) (11) +
			τ (C8C9C10C11)(17)
171	166	176vw	$\delta(O20C2C3)(11) + \delta(C21O19C15)(13) + \delta(C23O20C2)(22)$
160	155	153vw	$v(O18H48)(18) + \delta(C9C10C11)(12)$
135	131	138vw	$v(O18H48)(42) + \delta(H48O18C9)(11)$
126	123	122vw	$\delta(O19C15C16)(11) + \delta(C21O19C15)(17) + \delta(C23O20C2)(15)$
117	113		τ (C21019C15C14) (48) + τ (C23O20C2C1) (20)
116	112	106w	τ (C21O19C15C14)(20) + τ (C23O20C2C1)(48)
101	98	103w	τ (C7C8C9C10) (10) + τ (C8C9C10C11) (12) + τ (C22C21019C15) (10) +
			τ(C24C23O20C2) (10)
99	96		δ (H48O18C9) (35) + τ (O47H48O18C9) (12)
92	90		τ (H48O18C9C8) (23) + τ (C1C6C5C7) (11) + τ (C5C7C8C9) (18)
82	80	84w	τ (C9C10C11C12) (18) + τ (C22C21O19C15) (21) + τ (C24C23O20C2) (14) +
			γ(C11C13C17C12) (12)
61	60	65w	$\delta(C7C8C9)(11) + \delta(C10C11C12)(16) + \delta(C6C5C7)(10) + \delta(C5C7C8)(13) +$
			δ(C11C12C17) (10)
49	47		τ (H48O18C9C8) (15) + τ (C7C8C9C10) (11) + τ (C22C21O19C15) (12) +
			τ (C24C23O20C2) (18)
40	39	38w	τ (H48O18C9C8) (25) + τ (C10C11C12C13) (20) + τ (C8C9C10C11) (12)
31	30		τ (H48O18C9C8) (11) + τ (C10C11C12C13) (10) + τ (C1C6C5C7) (15) +
			$\tau(C5C7C8C9)$ (10)
23	23		τ (H48O18C9C8) (10) + τ (C7C8C9C10) (11) + τ (C10C11C12C13) (18) +
			$\tau(C6C5C7C8)$ (40)
21	21		$\delta(C7C8C9)$ (16) + $\delta(C10C11C12)$ (19) + $\delta(C5C7C8)$ (14) + $\delta(C9C10C11)$
			$(18) + \delta(C8C9C10)$ (15)
14	13		τ (C7C8C9C10) (21) + τ (C10C11C12C13) (10) + τ (C6C5C7C8) (16) +
			τ (C8C9C10C11)(15)

Table S3. Calculated vibrational wavenumbers (in cm⁻¹) unscaled and scaled by the scale factor 0.9694 (ω <1800) and 0.9430 (ω ≥1800), experimental Raman and infrared bands positions in units of cm⁻¹ and assignment of vibrational modes for DB ethoxy in a trihydrated model.

Wcalc	Wscal	WRaman	Wir	Assignment of the molecular vibrations with PED (%)
3880	3659			v(O53H55) (75) + v(O53H54) (19)
3880	3659			v(O50H52)(76) + v(O50H51)(18)
3860	3640			v(O47H49) (96)
3756	3541			v(O53H55)(20) + v(O53H54)(79)
3755	3541			v(O50H52)(19) + v(O50H51)(80)
3641	3434			v(O47H48) (94)
3229	3045	3063vw		v(C14H34) (96)
3227	3044		3037vw	v(C1H25) (95)
3209	3026	3034vw		v(C16H35)(47) + v(C17H36)(50)
3208	3025			v(C3H26)(58) + v(C4H27)(41)
3197	3014			v(C16H35)(49) + v(C17H36)(41)
3195	3013	3012vw		v(C3H26)(38) + v(C4H27)(53)
3191	3009			v(C6H28) (91)
3188	3006			v(C13H33) (92)
3185	3004			v(C8H30)(17) + v(C10H31)(70)
3174	2993			v(C8H30) (70) + v(C10H31) (19)
3165	2984			v(C11H32) (96)
3160	2980	2977vw	2985vw	v(C7H29) (89)
3141	2962		2976vw	v(C22H40) (29) + v(C22H41) (64)
3140	2961			v(C24H45)(64) + v(C24H46)(27)
3136	2957			v(C22H39)(60) + v(C22H40)(36)
3136	2957	2936vw	2935vw	v(C24H44)(59) + v(C24H46)(37)
3066	2891			v(C23H42)(54) + v(C23H43)(43)
3065	2890			v(C21H37)(53) + v(C21H38)(44)
3059	2885		2885vw	v(C22H39)(34) + v(C22H40)(35) + v(C22H41)(31)
3059	2885	2881vw		v(C24H44)(34) + v(C24H45)(30) + v(C24H46)(35)
3022	2850			v(C23H42)(43) + v(C23H43)(55)
3022	2850	2862vw		v(C21H37)(45) + v(C21H38)(54)
1731	1678			v(O18C9) (39) + v(C8C7) (15) + v(C11C10) (16)
1702	1650	1643w	1640vs	$\delta(\text{O47H48O18}) (25) + \tau(\text{O47H48O18C9}) (36) + \tau(\text{H48O18C9C10}) (21)$
1679	1627			v(C8C7)(16) + v(C11C10)(17)
1679	1627			δ(H52O50H51) (87)
1678	1627		1620vw	δ(H55O53H54) (92)

1666	1615	1620s		v(C4C3)(13) + v(C17C16)(16)
1655	1604	1603m	1601vs	v(C4C3)(11) + v(C17C16)(11)
1628	1578	1584s	1583s	v(O18C9) (32)
1616	1566	1569vs	1568vs	v(C2C1)(11) + v(C15C14)(19)
1614	1564	1556w		v(C2C1)(16)
1559	1512	1515vw	1510vs	δ (H25C1C6) (11) + δ(H26C3C4) (15) + δ(H27C4C5) (11) + δ(H28C6C1) (14) + δ(H43C23H42) (11)
1559	1511			δ (H33C13C14) (12) + δ (H34C14C13) (11) + δ (H35C16C17) (14) + δ (H36C17C16) (13) + δ (H38C21H37) (12)
1536	1489	1497vw		$\delta(H38C21H37)(39) + \delta(H43C23H42)(31)$
1535	1/88	119770	1/77w	$\delta(H38C21H37)(31) + \delta(H43C23H42)(39)$
1513	1466		1477w	$\delta(H45C24H44)(11) + \delta(H46C24H45)(54) + \tau(H45C24C23O20)(12) + \tau(H45C24C23O20)(10)$
1513	1466	1475vw	1469vw	δ (H39C22H41) (10) + δ (H41C22H40) (55) + τ (H40C22C21O19) (10) + τ (H41C22C21O19) (11) + τ (H41C22C21O19) (11)
1500	1455	1459vw		$\delta(H44C24H46)(39) + \delta(H45C24H44)(35) + \tau(H44C24C23O20)(16)$
1500	1454			$\delta(H39C22H41)(36) + \delta(H40C22H39)(39) + \tau(H39C22C21O19)(16)$
1474	1428	1425w	1425m	$v(C4C3)(20) + v(C1C6)(19) + \delta(H25C1C6)(13)$
1471	1426			$v(C17C16)(22) + v(C14C13)(21) + \delta(H34C14C13)(13)$
1442	1398			$\delta(H44C24H46)(14) + \delta(H45C24H44)(14) + \tau(H43C23O20C2)(11)$
1442	1398	1396vw	1396w	δ (H39C22H41) (14) + δ (H40C22H39) (14) + τ (H38C21O19C15) (11)
1412	1368			τ (H38C21O19C15) (10) + τ (H43C23O20C2) (13)
1411	1368			τ (H38C21O19C15) (15) + τ (H43C23O20C2) (10)
1400	1357	1351vw	1348vw	δ(H29C7C8) (24)
1379	1337	1325vw	1333w	$v(C8C7)(10) + v(C13C12)(10) + \delta(H29C7C8)(16) + \delta(H32C11C12)(15)$
1363	1321	1311w	1555 W	$\delta(H_{30}(R_{0}))$ (15)
1355	1321	1311w	1308w	$\delta(H32C11C12)$ (10) + $\delta(H33C13C14)$ (14) + $\delta(H35C16C17)$ (11) +
				δ(H36C1/C16) (13)
1349	1308	1295w		$\delta(H25C1C6)(10) + \delta(H28C6C1)(12) + \delta(H30C8C9)(11)$
1347	1306			δ(H31C10C11) (17)
1330	1289		1292m	$\delta(H29C7C8)(12) + \delta(H32C11C12)(10)$
1313	1273	1272vw		$v(C12C11)(13) + \delta(H30C8C9)(15)$
1308	1268			δ (H37C21C22) (63) + τ (H37C21O19C15) (12) + τ (H38C21O19C15) (11)
1307	1267			$\delta(H42C23C24)(63) + \tau(H42C23O20C2)(12) + \tau(H43C23O20C2)(11)$
1286	1247	1251m	1252vs	v(C14C13)(10) + v(O19C15)(22) + v(O20C2)(18)
1285	1245			v(O19C15)(20) + v(O20C2)(23)
1256	1218	1220w	1219vw	$v(C5C6)(15) + v(C7C5)(17) + \delta(H28C6C1)(11)$
1242	1204	1196w	1190s	$v(C13C12)(12) + v(C12C11)(11) + \delta(H32C11C12)(19) + \delta(H35C16C17)(13)$
1213	1176	1176m	1169vs	$\delta(H25C1C6)(16) + \delta(H26C3C4)(12) + \delta(H27C4C5)(12) + \delta(H28C6C1)(17)$
1210	1173	117011	110743	$\delta(H_{23}C_{13}C_{14})(21) + \delta(H_{24}C_{14}C_{13})(14) + \delta(H_{24}C_{14}C_{14})(12) + \delta(H_{24}C_{14}C_{14})(14) + \delta(H_{24}C_{14}C_{14})(14) + \delta(H_{24}C_{14}C_{14})(14) + \delta(H_{24}C_{14}C_{14})(14) + \delta(H_{24}C_{14}C_{14})(14) + \delta(H_{24}C_{14})(14) + \delta(H_{24})(14) + \delta(H_{2$
1196	1150			$S(H42C22C24)(24) + \sigma(H42C22C20C2)(25)$
1186	1150	1159		$8(H27C21C22)(24) + \pi(H27C21C10C25)(25)$
1160	1120	1138vw		o(15/C21C22)(24) + i(15/C21C19C13)(23)
1157 1157	1122	112/VW		$ v(C1C6) (11) + \delta(H25C1C6) (11) + \delta(H25C3C4) (10) v(C14C13) (10) + \delta(H34C14C13) (12) + \delta(H35C16C17) (10) + \delta(H36C17C16) $
1142	1100	1112	1115	(10) -(145C24C22O20) (14) + -(14(C24C22O20) (14)
1143	1108	1113W	1115W	t(H45C24C23O20)(14) + t(H46C24C23O20)(14)
1142	1107			τ (H40C22C21O19)(14) + τ (H41C22C21O19)(14)
1127	1093	1098vw	1097vw	$v(C9C8)(25) + v(C10C9)(26) + \delta(H30C8C9)(13) + \delta(H31C10C11)(15)$
1085	1052	1049vw		τ (H49O47H29C7) (17) + τ (H29C7C8C9) (53) + τ (H30C8C9C10) (14)
1070	1038		1045s	v(C22C21)(12) + v(C24C23)(28) + v(O19C21)(12) + v(O20C23)(28)
1070	1037			v(C22C21)(28) + v(C24C23)(12) + v(O19C21)(29) + v(O20C23)(12)
1036	1005		1025vw	τ (H31C10C9C8) (15) + τ (H32C11C12C13) (71)
1032	1001			$\delta(H27C4C5)(10) + \delta(C4C3C2)(37) + \delta(C2C1C6)(23) + \delta(C3C2C1)(12)$
1031	1000	996vw	989s	$\delta(C17C16C15)(45) + \delta(C15C14C13)(26) + \delta(C16C15C14)(15)$
1004	973			τ (H35C16C17C12) (54) + τ (H36C17C16C15) (21) + τ (C17C16C15C14) (15)
1003	972			τ (H26C3C4C5) (50) + τ (H27C4C5C6) (26) + τ (C4C3C2C1) (13)
1001	970	981w		v(O18C9)(12) + v(C9C8)(22) + v(C10C9)(22)
968	939	944vw		τ (H25C1C6C5) (13) + τ (H28C6C5C4) (54) + τ (C5C6C1C2) (20)
951	922	924w		$\tau(H_{3}C_{13}C_{14}C_{15})(49) + \tau(H_{3}C_{14}C_{15}C_{19})(29) + \tau(C_{15}C_{14}C_{13}C_{12})(10)$
9/1	012	210		v(C22C21)(23) + v(O19C21)(14)
040	012	000	022	$v(C24C23)(23) + v(C20C23)(14) + \tau(H45C24C23O20)(10)$
000	912 881	9090w 878ww	922 W 881 W	τ (H30C2C0C10) (20) + τ (H31C10C0C8) (22) + τ (O18C10C8C0) (12)
202	961	070VW	001 W	((15)(-36)(-50)(-50) + ((15)(-10(-50)(-52) +)((01)(-10(-50))(-12)))
091	004			O(CSC2CT)(TT) =(U2(C2CAC5)(10) + =(U27CAC5CC)(12) + =(U21C10C0C2)(10) +
8//	851			$t(H_20C_3C_4C_5)(10) + t(H_2/C_4C_5C_6)(12) + t(H_31C_10C_9C_8)(10) + t(H_31C_10C_9C$
871	844		835m	τ (H36C17C16C15) (14) τ (H26C3C4C5) (15) + τ (H27C4C5C6) (22) + τ (H35C16C17C12) (15) +
		a :=		τ(H36C17C16C15) (26)
866 858	839 832	857w 830ww		δ (C16C15C14) (13) τ (H27C4C5C6) (16) + τ (H30C8C9C10) (12) + τ (H31C10C9C8) (13) +
0.70	0.52	050VW		τ (H36C17C16C15) (15)
847	821			τ (H25C1C6C5) (13) + τ (H44C24C23O20) (13)
844	818	813vw	812m	τ(H39C22C21O19) (16)
823	798	806vw	789w	τ (H25C1C6C5) (33) + τ (H28C6C5C4) (11)
817	792			τ (H33C13C14C15) (18) + τ (H34C14C15O19) (37)
815	790	791vw		τ (H25C1C2C3) (36) + τ (H28C6C5C7) (18) + τ (H34C14C15C16) (36) +
015	, ,0	, / I V VV		τ(H33C13C12C11) (18)

790	766	776vw		v(O19C15) (10)					
751	728	737vw		τ (C15C14C13C12) (18) + γ (O18C10C8C9) (19)					
727	705	719vw		τ(C15C14C13C12) (23)					
723	701	704vw		$\delta(O18C9C8)(18) + \delta(C3C2C1)(10)$					
697	676	679vw		$\delta(O47H48O18)(33) + \delta(H48O18C9)(16) + \tau(O47H48O18C9)(16)$					
693	672	664vw	661vw	$\tau(C15C14C13C12) (10) + \gamma(O18C10C8C9) (36)$					
654	634	638w	638vw	$\delta(C14C13C12)(14) + \delta(C15C14C13)(19)$					
652 500	632	625vw		$\delta(C5C6C1)(13) + \delta(C4C3C2)(11) + \delta(C2C1C6)(19)$					
599	581	593W		$\delta(C14C15C12)(10)$ $\delta(C501151020)(20) + \delta(C220201151)(10)$					
581	203 557	578VW		0(030H51020)(20) + 0(023020H51)(10) S(050H51020)(21) + S(052H54010)(21) + S(H51020C2)(17)					
575	557 552	554vvv		0(050H51020)(21) + 0(055H54019)(21) + 0(H51020C2)(17) 8(052H54010)(22) + 8(H54010C15)(17)					
5/0	525	334VW		a(0)(1)(1)(2)(2) + a(0)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)					
535	518	539w		$\delta(C10C9C8)(24)$					
533	517	516vw		$\gamma(019C14C16C15)(17)$					
447	433	438vw		$\delta(C13C12C11)(12) + \delta(C7C5C6)(12) + \delta(O19C15C16)(12) + \delta(O20C2C3)(17)$					
				$+\delta(C24C23O20)$ (10)					
440	426			$\delta(O19C15C16)(27) + \delta(O20C2C3)(14)$					
435	422	420vw		$\delta(O20C2C3)$ (11)					
428	415	414vw		$\tau(H25C1C6C5) (11) + \tau(C4C3C2C1) (16) + \tau(C3C2C1C6) (16) + \tau(C5C6C1C2) $ (32)					
427	414	403w		(32) τ (H33C13C14C15) (11) + τ (H36C17C16C15) (12) + τ (C17C16C15C14) (20) +					
127		105 1		τ (C14C13C12C11) (17) + τ (C16C15C14C13) (21)					
390	378	384vw		τ (H49O47H29C7) (13) + τ (C4C3C2C1) (20) + γ (O20C1C3C2) (16) +					
				γ(C7C4C6C5) (16)					
384	372	368vw		τ (C17C16C15C14) (17) + τ (C14C13C12C11) (28) + τ (C12C11C10C9) (13) +					
				γ(019C14C16C15) (20)					
362	351	353vw		$\delta(C22C21O19)(21) + \delta(C24C23O20)(21)$					
336	326	320vw		$\delta(C22C21O19)(10) + \tau(H48O18C9C10)(10)$					
328	318	300vw		$\delta(047H48O18) (14) + \tau(H49O47H29C7) (10) + \tau(O47H48O18C9) (16) +$					
				τ(H48O18C9C10) (21)					
274	266	279vw		δ(H49O47H29) (53)					
270	262	2/1vw		$v(018H48)(13) + \delta(C11C10C9)(11)$					
261	253	256VW		t(H52050H51020)(14) + t(050H51020C2)(12) + t(H44C24C23020)(27) + -(U46C24C23020)(27) +					
250	251	240		T(H40C24C23O20)(10) $\pi(H55O52H54O10)(12) + \pi(O52H54O10C15)(11) + \pi(H20C22C21O10)(22) +$					
239	231	249VW		τ (H40C22C21O19) (11) + τ (H41C22C21O19) (12) + τ (H40C22C21O19) (52) +					
252	244			$\delta(C13C12C11)(11) + \delta(C7C5C6)(16) + \delta(C10C9C8)(11)$					
245	237	236vw		τ (H52O50H51O20) (46) + τ (C23O20H51O50) (18)					
242	234			τ (H55O53H54O19) (50) + τ (C21O19H54O53) (18)					
228	221			τ (H55O53H54O19) (13) + τ (O53H54O19C15) (25)					
223	216	217vw		τ (H52O50H51O20) (21) + τ (O50H51O20C2) (34)					
209	203	204vw		τ (H55O53H54O19) (11) + τ (O53H54O19C15) (23) + τ (C11C10C9C8) (10)					
200	193			τ (H49O47H29C7) (14) + τ (C10C9C8C7) (16)					
191	186	184vw		$\tau(C12C11C10C9) (13) + \tau(C9C8C7C5) (15) + \tau(C10C9C8C7) (10)$					
180	174	176vw		$\delta(O19C15C16)(12) + \delta(C21O19H54)(11)$					
164	159	153vw		$v(O18H48)(14) + \delta(C9C8C7)(11)$					
139	135	138vw		$v(O18H48) (45) + v(O19H54) (16) + \delta(H48O18C9) (11)$					
133	129	100		v(O20H51)(27)					
131	127	122VW		v(019H54)(39) + v(020H51)(23)					
121	107			$\tau(C22C21O19C15)(11) + \tau(C21O19H54O53)(13) + \tau(C23O20H51O50)(14)$					
100	107	106w		$\tau(C21019C13)(11) + \tau(C21019H54053)(13) + \tau(C25020H51050)(14)$ $\tau(C21019H54053)(12) + \tau(C23020H51050)(19)$					
103	99	103w		$\tau(C8C7C5C4)(11) + \tau(C11C10C9C8)(10) + \tau(C13C12C11C10)(16)$					
100	97	105 W		δ(H48O18C9) (27)					
92	89			τ (C14C13C12C11) (13) + τ (C12C11C10C9) (13) + τ (C9C8C7C5) (11)					
81	79	84w		τ (C9C8C7C5) (14) + τ (C22C21O19C15) (11) + τ (C24C23O20C2) (16) +					
				γ(C7C4C6C5) (10)					
71	69			δ (H48O18C9) (12) + δ (C21O19H54) (11) + δ (C23O20H51) (11)					
68	66	65w		$\delta(050H51O20) (14) + \delta(053H54O19) (13) + \delta(H54O19C15) (14) +$					
~ .	50			$\delta(\text{H51O20C2}) (17) + \delta(\text{C21O19H54}) (12) + \delta(\text{C23O20H51}) (13)$					
54	52			0(H54019C15)(11) + 0(C8C7C5)(12) + 0(C13C12C11)(10) + 0(C7C5C6)(11) + $8(C12C11C10)(11)$					
50	48			τ (C11C10C9C8) (14) + τ (C22C21019C15) (20) + τ (C24C23020C2) (11)					
45	44			τ (H51O20C2C1) (17) + τ (C8C7C5C4) (21) + τ (C24C23O20C2) (12)					
37	36	38w		τ(H54O19C15C14) (42)					
32	31			γ(C7C4C6C5) (12)					
25	24			τ (H48O18C9C10) (12) + τ (H54O19C15C14) (11) + τ (H51O20C2C1) (34)					
18	18			$\delta(\text{C8C7C5}) (19) + \delta(\text{C11C10C9}) (15) + \delta(\text{C12C11C10}) (14) + \delta(\text{C9C8C7}) (18) +$					
				δ(C10C9C8) (15)					
14	13			τ (H51020C2C1) (14) + τ (C8C/C5C4) (33) + τ (C12C11C10C9) (11) + τ (C10C0C8C7) (18)					
12	11			$\pi(C11C10C9C8) (28) + \pi(C12C12C11C10) (42)$					
14	11			(CIICIUC/CU) (20) · (CIICIUCIU) (72)					

Table S4. Calculated vibrational wavenumbers (in cm⁻¹) unscaled and scaled by the scale factor 0.9712 (ω <1800) and 0.9476 (ω ≥1800), experimental Raman and infrared bands positions in units of cm⁻¹ and assignment of vibrational modes for DB chlorine.

Wcalc	Wscal	WRaman	Wir	Assignment of the molecular vibrations with PED (%)			
3224	3055			v(C1H21)(38) + v(C16H31)(44)			
3224	3055	3066vw	3050vw	v(C1H21)(45) + v(C16H31)(39)			
3222	3053			v(C3H22)(36) + v(C14H30)(39)			
3222	3053	3054vw		v(C3H22)(40) + v(C14H30)(37)			
3202	3034			v(C4H23)(41) + v(C13H29)(40)			
3202	3034			v(C4H23)(41) + v(C13H29)(42)			
3193	3026			v(C6H24)(46) + v(C17H32)(47)			
3193	3026	3018vw		v(C6H24)(47) + v(C17H32)(46)			
3183	3016	001011		v(C8H26)(46) + v(C10H27)(46)			
3174	3008			v(C8H26)(46) + v(C10H27)(46)			
3166	3001			v(C7H25)(48) + v(C11H28)(48)			
3166	3000			v(C7H25)(46) + v(C11H26)(45) v(C7H25)(46) + v(C11H28)(47)			
1752	1701	1670vw	1668w	v(0.1829)(40) + v(0.11120)(47) v(0.1809)(53) + v(0.708)(12) + v(0.10011)(12)			
1681	1632	1649w	1649s	v(C1C2)(33) + v(C10C11)(22)			
1656	1609	1629m	1626vs	v(018C9)(20) + v(07C8)(12) + v(010C11)(12)			
1646	1598	102711	1589vs	v(C4C3)(14) + v(C13C14)(15)			
1641	1593	1590vs	150775	v(C4C3)(14) + v(C13C14)(15) v(O18C0)(14) + v(C13C14)(10)			
1612	1566	157013		v(018C9)(14) + v(C13C14)(10) v(C2C1)(14) + v(C16C15)(14) + v(C6C5)(11) + v(C12C17)(10)			
1612	1566	1566m	1566m	v(C2C1)(14) + v(C16C15)(14) + v(C6C5)(11) + v(C12C17)(10) v(C2C1)(14) + v(C16C15)(14) + v(C6C5)(11) + v(C12C17)(10)			
1533	1/80	150011	150011	$\delta(H^{2}C^{3}C^{4})(10) + \delta(H^{3}C^{1}A^{1}C^{1}S)(10)$			
1522	1409	1400m	1480a	8(H22C3C4)(10) + 8(H20C14C15)(10)			
1449	1407	1490w	14055	v(C1C6)(10) + v(C12C14)(11) + v(C17C16)(11)			
1440	1407	1407W	140011	v(C12C14)(11) + v(C17C16)(11) + v(C17C16)(11)			
1447	1224	1242	1220	$S(U_2)(C_1)(U_1) + S(U_2)(U_1)(U_1)$			
1262	1222	1342W	1336W	S(1125C7C8)(24) + S(1128C11C12)(21)			
1250	1525	1322W	1327W	S(125C/C6)(24) + S(127C10C11)(21)			
1330	1311	1312W		o(H2OU3U9)(10) + o(H2/U10U11)(19) $\delta(H25C7C8)(12) + \delta(H28C11C12)(11)$			
1345	1300	120.4		$v(C_3C_2)(12) + v(C_1S_2(11))$			
1221	1292	1294W		$\delta(\text{H}^{23}\text{C4C5})(12) + \delta(\text{H}^{29}\text{C13}\text{C14})(10) + \delta(\text{H}^{20}\text{C14}\text{C15})(10)$			
1331	1292	12//W	1200	$\delta(H25C7C8)(10) + \delta(H25C15C14)(10) + \delta(H50C14C15)(10)$			
1321	1283	126/W	1290W	$0(\Pi 25C/C6)(14)$ $y(C5C7)(11) + y(C11C12)(11) + \delta(H26C8C9)(14) + \delta(H27C10C11)(11)$			
1303	1205	1259W	1100	$\lambda((L3C7)(11) + \lambda(L11C12)(11) + \delta(H26C8C9)(14) + \delta(H27C10C11)(11)$ $\lambda(H25C7C8)(10) + \lambda(H28C11C12)(10)$			
1230	1201	1204W	1188m	$\delta(H25C/C8)(10) + \delta(H28C11C12)(10)$ $\nu(C6C5)(10) + \nu(C17C12)(10) + \nu(C12C11)(10) + \nu(C7C5)(10) +$			
1233	1198	1189W		v(C6C5)(10) + v(C1/C12)(10) + v(C12C11)(10) + v(C/C5)(10) +			
				0(H2/C10C11)(10) + 0(H28C11C12)(10) + 0(H26C8C9)(10) + 0(H25C/C5) (10)			
1200	1174			(10) S(1)24C(C(5)) (12) + S(1)20C(12C(14)) (10) + S(1)22C(17C(14)) (14)			
1209	11/4	1176	1170	0(H24C0C5)(13) + 0(H29C13C14)(10) + 0(H32C17C16)(14)			
1208	11/5	11/6W	11/8m	0(H24C0C3)(I3) + 0(H29CI3CI4)(I0) + 0(H32CI7CI0)(I3)			
1138	1100	1104	1111	V(C1C0)(10) + 0(H21C1C0)(11) + 0(H31C10C17)(11)			
1138	1000	1104vw	1111m 1102m	V(C1C0)(10)			
1125	1090	1002	1105111	v(C3C3)(14) + v(C3C10)(14) v(C3C1)(12) + v(C3C22)(15) + v(C15C14)(14) + v(C1(C15)(12))			
1111	10/9	1092W	1096-	v(C2C1)(12) + v(C3C2)(13) + v(C15C14)(14) + v(C16C15)(12) v(C9C0)(10) + v(C9C10)(10)			
1012	1009	1012	10865	V(C8C9)(10) + V(C9C10)(10)			
1043	1013	1013vw	1011m	t(H25C/C8C9)(38) + t(H28C11C12C13)(33)			
1035	1005	005	004	t(H25C/C8C9)(30) + t(H20C8C9C10)(10) + t(H28C11C12C13)(55)			
1028	998	985VW	984VW	$\delta(C4C3C2)(19) + \delta(C13C14C15)(19) + \delta(C2C1C6)(12) + \delta(C1/C16C15)$			
1007	000			(12) + 0(C10C15C14)(10) S(C1C2C2)(10) + S(C12C14C15)(10) + S(C2C1CC)(12) + S(C12C14C15)			
1027	998			$\delta(C4C3C2)(19) + \delta(C13C14C15)(19) + \delta(C2C1C6)(12) + \delta(C1/C16C15)$			
007	050	070		(12) + 0(C16C15C14)(10)			
987	959	970vw		v(C8C9)(23) + v(C9C10)(23)			
969	941			$\tau(H21C1C6C5)(13) + \tau(H24C6C5C4)(21) + \tau(H31C16C1/C12)(13) + (H22C17C1cC15)(13) + (H22C17C1cC15)(13) + (H22C17C1cC15)(13) + (H22C17C15C1)(13) + (H22C17C15C15C1)(13) + (H22C17C15C15C1)(13) + (H22C17C15C1)(13) + (H22C17C15C15C1)(13) + (H22C17C15C1$			
0.00	0.41	050		t(H32C1/C16C15)(18) + t(C2C1C6C5)(11)			
969	941	950vw		$\tau(H21C1C6C5)(13) + \tau(H24C6C5C4)(21) + \tau(H31C16C1/C12)(13) + (H22C17C16C1)(17) + (H22C17C16C17C16)(17) + (H22C17C17C17C17C17C17C17C17C17C17C17C17C17C$			
0.62	025			t(H32C1/C16C15)(1/) + t(C2C1C6C5)(11)			
963	935			$\tau(H22C3C4C5)(14) + \tau(H23C4C5C6)(16) + \tau(H29C13C14C15)(15) + (H29C13C14C15)(15) + (H29C14C15)(15) + (H29C14C15)(15) + (H29C15)(15) + (H29C15)(15) + (H29C15$			
0.62	0.25	024		$t(H_{30}C_{14}C_{15}C_{16})$ (16)			
963	935	924vw		$\tau(H22C3C4C5)(14) + \tau(H23C4C5C6)(16) + \tau(H29C13C14C15)(14) + \tau(H29C14C15)(14) + \tau(H29C14C15)(14) + \tau(H29C14C15)(14) + \tau(H29C14C15)(14) + \tau(H29C14C15)(14)$			
011	000	000	007	τ (H30C14C15C16) (16)			
914	888	888vw	887vw	τ (H26C8C9C10) (33) + τ (H2/C10C11C12) (34) + γ (O18C8C10C9) (15)			
878	853	866vw	866vw	$\delta(U_3U_2U_1)(11) + \delta(C16C15C14)(12)$			
876	850	859vw		$\tau(H26C8C9C10) (18) + \tau(H27C10C11C12) (30)$			
849	824	839vw		$\delta(U3U2U1)(15) + \delta(C16C15C14)(16)$			
843	819	832vw	822s	$\tau(H21C1C6C5)(21) + \tau(H24C6C5C4)(10) + \tau(H31C16C17C12)(21) +$			
0.5.1	04.5			τ(H32C1/C16C15) (14)			
834	810			$\tau(H22U3U4C5)(17) + \tau(H23U4C5C6)(14) + \tau(H24C6C5C4)(10) + \tau(H24C6C5C5C4)(10) + \tau(H24C6C5C4)(10) + \tau(H24C6C5C6)(10) + \tau(H24C6C5C6)(10) + \tau(H24C6C5C6)(10) + \tau(H24C6C5C6)(10) + \tau(H24C5C6)(10) + \tau(H24C6C5C6)(10) + \tau(H24C6C5C6$			
				$\tau(H29C13C14C15) (15) + \tau(H30C14C15C16) (16)$			

834	810	811vw		$\tau(H22C3C4C5) (21) + \tau(H23C4C5C6) (17) + \tau(H29C13C14C15) (18) +$
				τ(H30C14C15C16) (19)
824	801	774vw		τ (H27C10C11C12) (10) + τ (H32C17C16C15) (10)
761	739	729vw/751vw	750vw	δ(O18C9C10) (20)
742	721	713vw	711vw	τ (C2C1C6C5) (10) + τ (C12C17C16C15) (11) + γ (O18C8C10C9) (22)
714	693	679vw		τ (C4C3C2C1) (10) + τ (C13C14C15C16) (13) + τ (C2C1C6C5) (16) + τ (C12C17C16C15) (19)
684	664	674vw		$v(C19115)(15) + v(C2012)(15) + \delta(C1C6C5)(12) + \delta(C12C17C16)(12)$
679	659	663vw		$\tau(C12C17C16C15)(12) + \gamma(O18C8C10C9)(34)$
648	629	635vw		$\delta(C1C6C5)(10) + \delta(C2C1C6)(15) + \delta(C17C16C15)(15) + \delta(C12C17C16)$
040	02)	033 V W		(11)
647	629	623vw		$\delta(C4C3C2)(10) + \delta(C2C1C6)(16) + \delta(C1/C16C15)(16) + \delta(C12C1/C16)$ (10)
635	617	611vw		$v(C19115) (11) + v(C2012) (11) + \delta(O18C9C10) (23) + \delta(C1C6C5) (12) + \delta(C12C17C16) (12)$
533	517	536vw		$\delta(C10C11C12)(13) + \delta(C5C7C8)(12) + \delta(C8C9C10)(30)$
514	499			τ (C3C2C1C6) (11) + γ (C11C13C17C12) (14)
505	491	494vw		$\tau(C3C2C1C6) (11) + \gamma(C2011C3C2) (10) + \gamma(C19114C16C15) (10) + \gamma(C11013C17C12) (13)$
476	462	460ww		$\delta(018C9C10)(11) \pm \delta(C10C11C12)(10) \pm \delta(C6C5C7)(10) \pm \delta(C11C12C17)$
470	402	4007 W		(10)
431	419	429vw		v(C19115)(23) + v(C2012)(23)
418	406	407vw		$\tau(C4C3C2C1)(17) + \tau(C13C14C15C16)(16) + \tau(C17C16C15C14)(10) +$
410	400	407 V W		$\tau(C3C2C1C6)$ (10)
418	406	391vw		$\tau(C4C3C2C1)(17) + \tau(C13C14C15C16)(16) + \tau(C17C16C15C14)(10) + (C17C16C15C14)(10) + (C17C16C15C16)(10) + (C17C16C15C15C16)(10) + (C17C$
205	274	266		$\tau(C3C2C1C6)(11)$
385	3/4	366VW		O(Cb(SC7)(13) + O(C11C12C17)(13)
354	343	349vw		$\tau(C1C6C5C7)(17) + \tau(C9C10C11C12)(10) + \gamma(C2011C3C2)(17) + \gamma(C19114C16C15)(17)$
354	343	334vw		τ (C1C6C5C7) (17) + γ (C2011C3C2) (16) + γ (C19114C16C15) (16)
326	316	323vw		$\delta(C8C9C10) (12) + \delta(C19115C16) (29) + \delta(C2012C3) (30)$
290	282	285vw		$\delta(C19115C16)(30) + \delta(C2012C3)(23)$
249	242	231ww		$\delta(018C9C10) (14) + \delta(C7C8C9) (20) + \delta(C9C10C11) (19)$
197	192	190vw		$\delta(C6C5C7)(18) + \delta(C11C12C17)(18) + \delta(C8C9C10)(22) + \delta(C19115C16)$
				$(14) + \delta(C2012C3) (13)$
192	187			$\tau(C7C8C9C10)(28) + \tau(C8C9C10C11)(35)$
186	181			τ (C9C10C11C12) (11) + γ (C2011C3C2) (14) + γ (C19114C16C15) (14)
173	168	165w		$\tau(C3C2C1C6) (10) + \tau(C5C7C8C9) (22) + \tau(C9C10C11C12) (21) + \tau(C9C10C11C12) (21) + \tau(C10114C16C15) (13)$
152	148	122w		$v(C8C9)(10) + v(C9C10)(10) + \delta(C7C8C9)(10) + \delta(C9C10C11)(10)$
89	87	89w		$\delta(C10C11C12)(20) + \delta(C6C5C7)(16) + \delta(C5C7C8)(19) + \delta(C11C12C17)$
07	07	0 <i>7</i> w		(16)
79	77			τ(C7C8C9C10) (11) + τ(C10C11C12C13) (18) + τ(C6C5C7C8) (22) + τ(C6C
69	67	64w		$\tau(C1C6C5C7)(17) + \tau(C5C7C8C9)(12) + \tau(C9C10C11C12)(10) +$
48	47			γ (C11C13C17C12) (10) τ (C1C6C5C7) (22) + τ (C17C16C15C14) (10) + τ (C5C7C8C9) (14) +
				τ (C9C10C11C12)(13) + γ (C11C13C17C12)(15)
26	25			$\delta(C7C8C9) (18) + \delta(C10C11C12) (16) + \delta(C5C7C8) (16) + \delta(C8C9C10) (18) + \delta(C9C10C11) (18)$
19	18			$\tau(C7C8C9C10)(10) + \tau(C10C11C12C13)(33) + \tau(C6C5C7C8)(36) + (C6C5C7C8)(36) + (C6C5C7C8)(36$
16	16			T(USUSUUU11)(10) = (C10C11C12C12)(12) + (C(C5C7C2))(17) + (C(C5C7C2)) + (C(C5C7C2))(17) + (C(C5C7C2)
10	10			$\tau(C_{3}C_{3}C_{10})(23) + \tau(C_{10}C_{11}C_{12}C_{13})(13) + \tau(C_{3}C_{3}C_{12})(17) + \tau(C_{3}C_{3}C_{12})(17) + \tau(C_{3}C_{3}C_{12})(17) + \tau(C_{3}C_{3}C_{12})(17) + \tau(C_{3}C_{3})(17) + \tau(C_{3})(17) + \tau(C_{3})(1$

CAPÍTULO 4

Cytotoxicity Activity, Efflux Pump Inhibition, Anxiolytic-Like Effect and Molecular Docking Studies of Synthetic Bis-chalcones

Mauro M. de Oliveira^{a*}, Helcio S. Santos^{a,b}, Alexandre M. R. Teixeira^{a,c}, Raimundo L. S. Pereira^a, Thiago S. de Freitas^a, Janaina E. Rocha^a, Paulo N. Bandeira^b, João P. da Hora^b, Antônio L. A. B. Leal^a, Carlos E. S. Nogueira^{a,c}.

^a Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil

^b Science and Technology Centre - Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil

^c Department of physics, Regional University of Cariri, Crato, CE, Brazil

^{*}Corresponding author. Department of Biological Chemistry, Regional University of

Cariri, Campus Pimenta II, CEP: 63.100-000, Crato, CE, Brazil.

E-mail addresses: mauropandi@gmail.com

Abstract

Bis-chalcones are dibenzalacetone derivatives presenting two enone moiety which can be obtained by double condensation reaction. These chalcone derivatives present several biological activities, including anti-inflammatory, antitumoral and antimicrobial activities. In this work, the cytotoxicity activity, efflux pump inhibition and anxiolytic-like effect of three bis-chalcones (1E,4E)-1,5- bis(4-ethoxyphenyl)penta-1,4-dien-3-one (DB ethoxy), (1E,4E)-1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one (DB chlorine) and (1E,4E)-1,5-di(thiophen-2-yl)penta-1,4-dien-3-one (DB thiophene) were evaluated. DB thiophene and DB chlorine were very active in reduction of the cancer cells HCT-116 growth, as well as showed a possible anxiolytic-like effect in adult zebrafish model. Furthermore, they were able to modulate the resistance to Norfloxacin and Ciprofloxacin in S. aureus strains overproducers of the NorA and MepA efflux pumps, respectively, suggesting a potential action as efflux pump inhibitors. Docking studies indicated that this potential efflux inhibiting action occurs through the competition mechanism at the same binding site. Results found in the present study evidence that bis-chalcones tested, mainly DB thiophene, could be used as adjuvants of antibiotics such as Norfloxacin or Ciprofloxacin in the treatment of infections caused by S. aureus strains overproducing NorA or MepA efflux pumps.

Keywords: Efflux pump inhibitors, Bis-chalcones, Cytotoxicity, Anxiolytic, Docking.

1. Introdution

Several medical disorders, such as cancer[1], drug-resistant infections[2] and those related to central nervous system[3], have worried scientists worldwide, promoting a search for new bioactive compounds. The chalcone-like framework has fascinated researchers for a long time due to its versatility in obtaining different derivatives with a wide range of bioactivities[4], e.g., anti-inflammatory[5,6], antimicrobial[7,8], anti-oxidant[9], anticancer[10,11], anti-protozoal[12,13], anxiolytic[14], *etc*. This vast spectrum may be related to its small structure with an α , β -unsaturated carbonyl system (enone moiety) and to the large number of replaceable hydrogens[4], allowing them to bind reversibly or irreversibly[15] to several targets.

Derivatives with two enone moiety can be obtained by the double condensation of a ketone that possess two α, α' -active sites with two equivalents of aromatic aldehyde. This scaffold provides an extensive relocation of π electrons that is achieved through the dienone moiety favoring polarizability[16]. These compounds are commonly denominated as bis-chalcones[17–19], dibenzalacetone derivatives[20] or simply chalcone derivatives[21]. Divers bis-chalcones have shown remarkable anticancer activity against nasopharyngeal, oral, colon, prostate and cervical cancer[10,22]. The manipulation of its aromatic rings such as their replacement by heterocyclic rings or by ferrocene derivatives, as well as the association with other pharmacologically active structures have been reported to enhance anticancer activity[23].

In addition to anticancer activity, it is important to mention the ability of bischalcones to act, alone or in co-administration with an antibiotic, against pathogenic bacterial[24,25]. Bacterial resistance to antibiotics is a public health problem that causes many concern. The main mechanisms involved in the bacterial resistance to antibiotics include target site alteration, drug inactivation or modification, reduced drug accumulation, either by a decreased permeability of the cell wall or by the efflux of the antibiotic from the cell[26,27]. Multidrug efflux pumps consist of hydrophobic proteins that drives an important mechanism in the microbial resistance increasing, and the inhibition of such pumps is seen as a promising strategy for overcoming multidrug resistance (MDR) phenotype[28].

MDR efflux systems are separated into five families according to their energy needs and structures: the major facilitator superfamily (MFS); the small multidrug resistance (SMR) family; the multidrug and toxic compound extrusion (MATE) family; the resistance-nodulation-cell division (RND) superfamily; and the adenosinetriphosphate (ATP)-binding cassette (ABC) superfamily[27]. The NorA efflux pump is a MFS efflux system found in S. aureus, encoded by the norA chromosomal gene. This efflux pump confers resistance to hydrophilic fluoroquinolones, and is capable of expelling from the cell various substances such as Norfloxacin, Ciprofloxacin, Ethidium Bromide and quaternary ammonium compounds [29–31]. Overexpression of the mepA gene encoding the efflux pump MepA belongs to the MATE family was also observed in S. aureus mutant strains derived from efflux-related MDR phenotypes. MepA has a broad substrate profile, including various monovalent and divalent biocides, as well as Norfloxacin and Ciprofloxacin[32]. Inhibition of efflux pumps such as NorA and MepA could be made by different mechanisms, such as preventing overexpression of the genes encoding these proteins, disrupting pump assembly, reducing substrate binding by competitive or non-competitive means, and interrupting the required energy source of the pump. Compounds capable of performing such actions and consequently restoring antibiotic susceptibility to efflux-efficient strains, are called efflux pump inhibitors (EPI)[33,34].

Furthermore, anxiety disorders and pain affect people in all age groups today which also make them an important public health problem. Benzodiazepines (BZDs) are part of the most common group of drugs to treat these types of diseases, however they induce side effects such as sedation, muscle relaxation, amnesia, and dependence potential[3]. Dysfunctions of GABA_A receptor, responsible for phasic and tonic neuronal inhibition in the vertebrate central nervous system, are associated with epilepsy, insomnia, anxiety and chronic pain. BZDs act on positive allosteric modulation in relation to the endogenous receptor site[35]. Several studies have already reported the relevance of chalcones and their derivatives in anxiolytic-like effect including with affinity in BZD biding site[36–39]. Therefore, it is very important to develop a new chalcone-like structure that can enhance its anxiolytic action without causing side effects.

In the present study, three bis-chalcones ((1E,4E)-1,5-bis(4-ethoxyphenyl)penta-1,4-dien-3-one, (1E,4E)-1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one) and (1E,4E)-1,5-Di(thiophen-2-yl)penta-1,4-dien-3-one) previously synthesized and characterized by us [40,41], were evaluated for antiproliferative activity in HCT-116, SNB and PC3 cancer cell lines, ability to modulate the antibiotic resistance in *S. aureus* strains overproducers of NorA or MepA efflux pumps, and anxiolytic-like effect in GABAergic system. Molecular docking simulations were also carried out to understand the mechanism of interaction with NorA, MepA and GABA_A proteins. These three bis-chalcones will be referred to hereinafter as DB ethoxy, DB chlorine, and DB thiophene respectively.

2. Material and Methods

2.1. Compounds and Materials

The three bis-chalcones DB ethoxy, DB chlorine and DB thiophene were previously synthesized by us through the Claisen-Schmidt condensation reaction where their structures were also fully elucidated by mass, infrared, Raman and NMR spectroscopy[40,41]. Figure 1 shows the bis-chalcones molecular structures. The reagents dimethyl sulfoxide (DMSO), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), RPMI-1640 medium, chlorpromazine (CPZ), Ciprofloxacin, Norfloxacin, carbonyl cyanide m-chlorophenylhydrazone (CCCP) and ethidium bromide (EtBr) were purchased from Sigma-Aldrich Inc. Fetal bovine serum (FBS) and phosphate buffered saline (PBS) were from GibcoTM. Brain heart infusion (BHI) and blood agar base were purchased from KASVI company. Hydrochloric acid (HCl) and Isopropanol were from Dinâmica Química Contemporânea Ltd. and Vetec Química Fina Ltd. respectively. Drugs used for zebrafish experiments were diazepam (DZP) from Neo Química® and flumazenil (FMZ) from Sandoz.

Figure 1. DB ethoxy, DB chlorine and DB thiophene molecular structures.

2.2. Cytotoxicity assay

The three human cancer cell lines HCT-116 (colon carcinoma), SNB (glioblastoma) and PC3 (prostate) were provided by National Cancer Institute (USA).

They were initially grown in RPMI 1640 medium supplemented with 10% FBS and 1% antibiotics, in 5% CO₂ atmosphere at 37 °C. The antiproliferative activity of the samples were measured by Colorimetric MTT assay[42]. This technique consists of preparing a calibration curve with cells plated in 96-well trays in double dilutions starting with 10^5 cells/well in triplicates. First 0.01ml of MTT solution stock (MTT dissolved in PBS at 5 mg/mL) was added to each well. After 3 hours incubation at 37°C, acid isopropanol (0.1mL of HCl 0.04 M in isopropanol) was also added to each well and mixed. After few minutes at the room temperature optical density (absorbance) was read at wavelength of 595 nm. The best line that represents the relationship between the number of living cells and the absorbance of the medium is obtained by linear regression calculations using the least squares method. After this 0.1mL of neoplastic cells growth medium were plated in a 96-well tray $(0.7 \times 10^5 \text{ cells/mL})$ and then the compounds were added after 24 hours with a final concentration of 10 µM. The plates were incubated at 37 °C in 5% CO₂ atmosphere. After 72 hours, the optical density was recorded at the same wavelength and the reduction in cell viability was obtained from calibration curve. DMSO was used as the negative control. The assay was performed in triplicates and the results were expressed as reduction in cell viability (% RCV) ± standard error of the mean (SEM). Two-Way ANOVA followed by the Bonferroni post hoc test were applied. The compounds that showed a reduction in cell viability ranging from 65 to 100% were considered very active, those ranging from 40 to 65% as moderately active, from 1 to 40% as little active, less than 1% as inactive.

2.3. Evaluation of the modulating effect on the antibiotic resistance

Initially two multiresistant strains, *S. aureus* SA1199B that overexpress the *norA* gene encoding the NorA efflux protein and the multidrug resistant (MDR) strain *S. aureus* K2068 which presents MepA efflux pump, were grown overnight at 37°C in Heart Infusion Agar slants. Before use, the bis-chalcones were dissolved in DMSO aqueous solution (5,1% v/v), CPZ and EtBr were dissolved in sterile water (1:1, v/v) and CCCP in methanol/water (1;1, v/v), all up to the final concentration of 1024μ g/mL. The solutions were stored at -20°C. Then the Minimum Inhibitory Concentration (MIC), which is is defined as the lowest concentration in which no microbial growth can be observed[43], of the bis-chalcones, CPZ, CCCP and EtBr were determined by broth microdilution method. Each strain was ressuspended in 150µL of saline solution corresponding to approximately 10^5 colony-forming units/mL, followed by addition of 1350µL of BHI in

eppendorf's. 100μ L of inoculum were shifted to 96-well microtiter plate with two-fold serial dilutions by adding 100μ L of each compound solutions with final concentration ranging from 0.5 to 512μ g/mL. The microtiter plates were incubated at 37°C for 24h and bacterial growth was revealed by staining with resazurin.

To establish the modulating effect on the resistance to Norfloxacin and Ciprofloxacin, MICs for these antibiotics were determined in the presence or absence of the bis-chalcones tested at sub-inhibitory concentration (MIC 1/8). Then a comparative study was made accessing its ability to decrease the MIC of antibiotics and EtBr, which is a substrate for MDR pumps including NorA[27,44–46] and MepA[32,47], by comparing with CPZ and CCCP, which are standard EPIs[48–51]. These results were expressed as a geometric mean \pm SEM of triplicates. They were analyzed by two-way ANOVA followed by Bonferroni post hoc test to identify statistical difference between treatments and control. Then, significant modifications of the activity were calculated as percent reduction of MIC in the presence of test compounds compared to controls (% of modulating effect).

2.4. Anxiolytic-like effect

2.4.1. Animals

The animal model used in this step was adult wild zebrafish (*Danio rerio*) (aZF) of both genders, from 60 to 90 days old, with 0.4 ± 0.1 g weight and 3.5 ± 0.5 cm long. They were purchased from Agroquímica: Comércio de Produtos Veterinários LTDA (Fortaleza, Brazil). Groups of 60 fish were acclimated for 24 hours in a glass tank ($30 \times 15 \times 20$ cm) containing dechlorinated water (ProtecPlus®) equipped with air pumps and submerged filters at 25 °C and pH 7.0, with a cicardian cycle 14/10h of light/dark. One day before experiment, the animals were fed *ad libitum* and, after the test, they were euthanized by immersion in ice water ($2 - 4^{\circ}$ C) for 10 min until the loss of opercular movements occurred[52]. The Ethics Committee on Animal Use of the Ceará State University (CEUA-UECE) approved all experimental procedures with acceptance number 3344801/2017.

2.4.2. Acute toxicity (96 h)

The acute toxicity study was carried out in aZF according to *Ekambaram* and colleagues[53]. As an adaptation of the method, aZF (n = 6/group) were treaded

intraperitoneally (*i.p.*) with 20 μ L of bis-chalcones (4, 20 and 40 mg/kg), diluted in DMSO 3%. As a negative control, it was used only the vehicle (DMSO 3%). After 24, 48, 72 and 96 hours, the number of dead aZF were recorded and the lethal concentration capable of killing 50% of the animals (LC₅₀) was determined using the mathematical method Trimmed *Spearman-Karber* with a 95% confidence interval[54].

2.4.3. Locomotor activity (Open field test)

To assess whether the bis-chalcones could alter the motor coordination of the animals, either by sedation and/or by muscle relaxation, the open field test was carried out, according to methodologies proposed by Benneh[55] and Magalhães[56]. The aZF (n = 6/group) were treated (*i.p.*) with 20 µL of bis-chalcone solutions in doses of 4, 20 and 40 mg/kg. The vehicle (DMSO 3%) and DZP (4 mg/kg) groups were also analyzed. After 30 min, the fishes were added in Petri dishes containing the same water from glass tank, marked with quadrants and the locomotor activity was analyzed by counting the number of crossing lines for 5 minutes. Animals that did not receive treatments (naïve) were considered as baseline (100% locomotor activity) and the percentage of locomotor activity (% LA) was calculated.

2.4.4. Light/dark test

This test was carried out in an aquarium $(30 \times 15 \times 20 \text{ cm})$ filled with 3 cm of water, pre-treated with anti-chlorine containing a light and a dark zone. The aZF (n = 6/group) were treated (*i.p.*) with bis-chalcones (4, 20 and 40mg/kg; 20 µL), vehicle (3% DMSO; 20 µL) and diazepam (4 mg/kg; 20 µL). A naïve group (no treatment) was also incorporated to the test. After 30 min, the anxiolytic-like effect was assessed by the individual introduction of the fish in the clear zone and subsequent quantification of their permanence in this zone during 5 minutes in percentage (PCZ, in%)[57].

2.4.5. Mechanism of action (GABAergic system)

According to Benneh[55], aZF (n = 6/group) were treated (*i.p.*) with FMZ (4 mg/kg; 20 μ L), after 15 min the same procedure with the three bis-chalcones (40mg/kg; 20 μ L), vehicle (3% DMSO; 20 μ L) and DZP (4 mg/kg; 20 μ L). After 30 min, the inhibition of the anxiolytic-like effect was quantified by light/dark test as discribed above[57]. Results were expressed as values of the mean ± standard error of the mean

(SEM) for each group of 6 animals. After confirming the normal distribution and homogeneity of the data, the differences between the groups were analyzed using a One-way ANOVA followed by the Tukey test.

2.5. Proteins modeling

Since the crystallographic structure of NorA and MepA proteins are not available in the literature, homology models were produced in SWISS-MODEL[58]. SWISS-MODEL searches in both BLAST (Basic Local Alignment Search Tool) and HHblits (HMM-HMM-based lightning-fast interative sequence search) to identify models. The combined use of these two approaches ensures good alignments at the high and low levels of sequence identity. The primary protein sequence of the NorA and MepA efflux pumps were recovered in Uniprot[59] with the entry codes Q5HHX4 and Q2G140. Of all the 50 templates generated in both case, and based on the Global Model Quality Estimation Score, the structure of E. coli YajR transporter (SMTL ID :3wdo.1) and P. furiosus MATE (pfMATE) transporter in complex with MaL6 (SMTL ID :3wbn.1) were selected as template of NorA and MepA molecular modeling respectively. The final models were protoned and examined using the program MolProbity[60]. In order to provide a better view of the cavities and tunnels of the transmembrane protein models, we proceed calculations with the MOLEonline 2.0 software[61], then using the USF Chimera[62], it was found which residues were in contact with main cavities. The human GABAA receptor structure in complex with diazepam (PDB-ID: 6hup) was retrieved from the protein data bank website[63].

2.6. Molecular Docking

In order to improve the understanding of the inhibition mechanisms of the NorA and MepA efflux pumps, as well as the anxiolytic-like effect in the GABAergic system, we performed the molecular docking simulation using AutoDock Vina[64]. The theoretical models of NorA and MepA proteins prepared in SWISS MODEL and the crystallographic structure of human GABA_A were used as macromolecules, Kolman charges were added and non-polar hydrogens merged. The ligands were optimized using the PM6 forcefield in the MOPAC software[65]. Gasteiger charges were added to ligands, non-polar hydrogens were merged, and rotational bonds tree was determined. The grid box was set up at 70-70-70 Å npts around the geometrical center of the NorA and MepA models, and around the benzodiazepine binding site at the $\alpha 1-\gamma 2$ interface of the

extracellular domain according to Zhu et al.[66]. The lowest energy pose of each docking calculation was then selected and analyzed.

3. Results and discussion

3.1. Cytotoxicity assay

The antiproliferative assessment of bis-chalcones DB ethoxy and DB chlorine in cancer strains HCT-116, SNB e PC3 has already been published by us recently[40]. In it, DB chlorine revealed to be very active (%RCV 85.03 ± 0.57) against colon carcinoma (HCT-116), little active against prostate cancer cells (PC3) and inactive for the glioblastoma (SNB), while DB ethoxy proved to be little active (HCT-116 and PC3) or completely inactive (SNB). In our present study, we carried out this same evaluation with DB thiophene, which demonstrated better citotoxicity effects in cancer strains tested. It was very active against HCT-116 (% RCV 85.24 ± 0.57), moderately active versus PC3 (% RCV 43.57 ± 3.09) and little active using SNB strains (% RCV 9.83 ± 4.90). Table 1 summarizes these results.

	(
Bis-chalcones	HCT-116	SNB	PC3	Ref.	
	Reductio	Reduction in Cell Viability (% RCV)			
H ₃ CH ₂ CO	8.21±4.32 ^{a1}	iav	12.59±7.32	[40]	
CI CI	85.03±0.57 ^{b1,b2}	iav	30.74±3.71 ^{b3}	[40]	
S S S S	85.24±0.57 ^{c1,c2}	9.83±4.90	43.57±3.09 ^{c3}	This work	

Table 1. Cytotoxicity of bis-chalcones at a single concentration (10 μ M) against HCT-116, SNB and PC3 cells after 72 h of incubation using MTT assay.

Abreviations: iav, inactive; ^{a1} p > 0.05 (not significant), in relation to DB ethoxy/PC3; ^{b1} p < 0.001, in relation to DB chlorine/PC3; ^{c1} p < 0.001, in retation DB thiophene/SNB and DB thiophene/PC3; ^{b2,c2} p < 0.001, in relation to DB ethoxy/HCT-116; ^{b3} p < 0.001 in relation to DB ethoxy/PC3; ^{c3} p < 0.001, in relation to DB ethoxy/HCT-116 and p < 0.01 in relation to DB chlorine/PC3.

It is well known that various synthetic chalcones derivatives provide effective anti-cancer actions. In addition, its heterocyclic analogues are still reported to be quite powerful against resistant cancer cell lineages[67]. A serie of thiophene chalcones derivatives has demostrated a high cytotoxicity in a variety of strains[68,69]. This is consistent with the performance presented by DB thiophene in this work. Comparing DB ethoxy and DB chlorine structures, we realized that the ethoxy group has an electrondonating effect greater than that of chlorine at para position. Therefore, the best results of DB chlorine may be due to this difference in mesomeric effect. This is in line with what was reported by Raghavan et al.[70] in which the increasing of electron-donating effect on chalcones A ring reduced cytotoxic activity. In this same study, the -Cl substituent was found to increase cytotoxicity consistently in all the three cell lines, viz., A549, MCF7 and MIA PaCa-2. Although the bis-chalcones mechanism of action is not clear here, it is known that the main form of compound-induced cell death is apoptosis, resulting from various cellular events[68].

3.2. Modulation of the bacterial resistence to antibiotics

The compounds studied in this work did not show intrinsic antimicrobial activity (MIC > 1024µg/mL), so their modulating action on the drug resistance in multi-drug resistant SA1199B and K2068 strains was investigated aiming to evaluate their potential activity as NorA or MepA inhibitors (Table 2). It should be noted that DB chlorine and DB thiophene showed the ability to modulate the resistance to EtBr in the strain K2068 comparable to CPZ, suggesting a possible inhibition of the MepA efflux pump. The inhibition of efflux by DB thiophene had already been published by our group previously[41]. The results indicated that the three bis-chalcones are probably inhibitors of NorA-mediated EtBr efflux, whereas in MepA-mediated EtBr efflux only DB ethoxy was inactive. Holler et al.[71] investigated a series of 117 chalcones, among which five were able to inhibit the NorA-mediated EtBr efflux. However, not all were able to inhibit the NorA efflux pump when the substrate was Ciprofloxacin.

Compounds ^a	Modulating effect (%)						
	SA1199B	K2068					
DB ethoxy	37.0	iav					
DB Chlorine	37.0	37.0					
DB thiophene	(29.3)	(43.9)					
CPZ	60.3	37.0					
CCCP	92.1	-					

Table 2. Modulating effect of bis-chalcones, Chlorpromazine (CPZ) and Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) on the resistance to Ethidium Bromide in the *S. aureus* SA1199B (*norA*) and K2068 (*mepA*) strains.

Abreviations: iav, inactive. ^aThe compounds were tested at subinhibitory concentration (MIC/8). All percent efflux inhibition were significant (p < 0.0001 *vs* control). Values in parentheses are from Oliveira and colleagues work[41].

In our previous work, DB thiophene was also able to favorably modulate the resistance to Norfloxacin and Ciprofloxacin in SA1199B and K2068, respectively. This compound reduced the MIC values for Norfloxacin by 30% and for Ciprofloxacin by half[41]. Another study also demonstrated the ability of compounds containing thiophene ring to restore the Ciprofloxacin activity against SA1199B[72]. Results found in the present study showed that DB ethoxy and DB chlorine were not able to modulate the resistance of SA1199B to Norfloxacin, and DB chlorine did not modulate the resistance of K2068 to Ciprofloxacin (data not shown). It is intriguing why these compounds have not increased the effect of antibiotics since they were active when tested in combination to EtBr. However, EtBr it is not a specific substrate for NorA or MepA[73], thus it can be extruded by other unidentified efflux pump systems present in the strains tested.

Controversially, DB ethoxy reduced the MIC of Ciprofloxacin by 50% against K2068, although it was inactive in the MepA-mediated EtBr efflux.

3.3. Acute toxicity (96 hours)

The aZF has become a complementary animal model to rodents in genetic, developmental biology, neurobiological and toxicological tests[74] since it has low cost, diverse adaptability, short reproduction cycle, high fertility and transparent embryos[75]. Its reduced dimensions in adulthood require a small amount of test compounds at doses as well as less reagents and materials used in the treatment and maintenance of the animals. The aZF also stand out for their use in assessing the toxicity of pharmaceutical compounds[76]. In this context, we used aZF as an animal model to measure the acute toxicity of DB ethoxy, DB chlorine and DB thiophene bis-chalcones. Results found showed that all tested samples proved to be safe, as they were not toxic to aZF until 96 hours of analysis (Table 3).

Compounds		mor	tality	96 hours		
Compounds	NC	D 1	D ₂	D ₃	LC50 (mg/kg) / CI	
DB ethoxy	0	0	0	0	> 40	
DB chlorine	0	0	0	0	> 40	
DB thiophene	0	0	0	0	> 40	

Table 3. Acute toxicity test of bis-chalcones in aZF.

Abreviations: NC, negative control group (DMSO 3%); D_1 , Dose 1 (4 mg/kg); D_2 , Dose 2 (20 mg/kg); D_3 , Dose 3 (40 mg/kg); LC_{50} , lethal concentration to kill 50% of adult zebrafish; CI, confidence interval.

3.4. Locomotor activity (Open field test)

Locomotor activity is one of the behavioral analysis parameters that has been used to evaluate drugs action on the central nervous system of the aZF and, eventually, induce locomotor impairment[57]. This activity can be analyzed using the open field test, in an aquarium[77], or Petri dishes[78]. The natural behavior of aZF in the open field is characterized by constant swimming activity. Manifestations of immobility are rarely observed in natural conditions, so one of the parameters that can be evaluated is its immobility, also called as freezing[79]. The analysis of locomotor activity explored through an open field can be a model used to assess hyperactivity as being indicative of anxiety[74]. Then, treatment with anxiolytic drugs can increase exploratory activity in the open field[79] or cause sedative effect and reduce locomotor activity[55].

The results of this assay showed that the bis-chalcones DB chlorine and DB thiophene (Figures 2B and 2C) provoked motor impairment in aZF. In this case, there was a significant reduction in the number of line crossing in the Petri dish by the animals compared to Naive group. In contrast, DB ethoxy (Figure 2A) did not alter the animal's locomotion during the 5 min of analysis. When analyzing the behavioral profile of aZF after treatment with DB chlorine and DB thiophene samples, the decrease in locomotor activity suggests a possible sedative action, such as benzodiazepines (anxiolytic drugs). It is known that these drugs can lower the locomotor activity (mobility) of aZF in open field tests[55]. Thus, these bis-chalcones must have their anxiolytic activity evaluated by the light/dark test and their possible mechanism of anxiolytic action enlightened. Since DB ethoxy did not alter the animals' locomotion, this may suggest a potential antinociceptive action as shown by Silva et al.[80].

Figure 2. Effect of bis-chalcones DB ethoxy (A), DB chlorine (B) and DB thiophene (C) under the locomotor activity of the adult zebrafish (*Danio rerio*) in the Open Field Test (0 - 5min). Naive - untreated animals. DZP - diazepam (4 mg/kg; 20 μ L; i.p.). Vehicle - 3% DMSO (20 μ L; i.p.). The values represent the mean \pm standard error of the mean (SEM) for 6 animals/group. ANOVA followed by Tukey test (*p<0.05; ***p<0.001; ****p<0.0001 *vs*. Naive); (**p<0.01; ****p<0.0001 *vs*. Vehicle).

3.5. Anxiolytic-like effect

Among the various tests to assess anxiety in adult zebrafish, the Light & Dark Test is one of the most used specific tests, as it is based on the paradigm of zebrafish's innate aversion to well-lit areas, like that of rodents. In such test, animals not treated with anxiolytic drugs present the same behavior as in mice, having aversion to clear zones[57,81,82].

In this context, we use the same animal model to investigate the anxiolytic-like effect of the synthesized compounds. Figures 3A and 3B show the anxiolytic-like effect of DB chlorine and DB thiophene, since aZF treated with both compounds (40 mg/kg; 20 μ L; i.p.) remained significantly for most of the analysis time in the clear zone (PCZ_{DB} chlorine = 54.16%; PCZ_{DB thiophene} = 78.27%), as Diazepam (4mg/kg; 20 μ L; i.p.) which is the anxiolytic control (PCZ_{DZP} = 81.05%).

Figure 3. Anxiolytic-like effect of bis-chalcones DB chlorine (A) and DB thiophene (B) on adult zebrafish (*Danio rerio*) in the Light & Dark Test (0-5min). Naive - untreated animals. Vehicle – 3% DMSO ($20 \,\mu$ L; i.p.). DZP – Diazepam (4 mg/kg; $20 \,\mu$ L; i.p.). The values represent the mean \pm standard error of the mean (SEM) for 6 animals/group.

ANOVA followed by Tukey test (****p< 0.0001 *vs*. Naïve or Vehicle); (# # #p<0.0001 *vs*. DZP). The numbers above each column indicate percentage of the permanence in the clear zone (PCZ).

3.6. Mechanism of action (GABAergic system)

When verifying a possible anxiolytic-like effect, we investigated the mechanism of action of this activity using the GABA_A antagonist, Flumazenil. It is a specific γ -aminobutyric acid (GABA_A) antagonist receptor complex. In this way it antagonizes the effects of benzodiazepines such as Diazepam, including anxiolytic, sedative, and hypnotic effects. Then, we used Flumazenil to investigate the mechanism of anxiolytic action at the highest dose (40 mg/kg; 20 µL; i.p.) using the light/dark test.

Flumazenil (4 mg/kg 20 μ L; ip) significantly reversed the anxiolytic-like effect of DB chlorine and DB thiophene (40 mg/kg; 20 μ L; i.p.), in addition to exhibiting the same behavior when used with Diazepam (4 mg/kg; 20 μ L; i.p.). In this case, there was a significant decrease in the permanence in the clear zone of animals pre-treated with Flumazenil and then with bis-chalcones, very similar to the results of animals treated with Flumazenil and Diazepam (Figures 4A and 4B). These results showed that both bis-chalcones evidence an anxiolytic-like effect via the GABAergic pathway.

Figure 4. Mechanism of anxiolytic action of bis-chalcones DB chlorine (A) and DB thiophene (B) on adult zebrafish (Danio rerio) in the Light & Dark Test (0-5min). Naive - untreated animals. Vehicle – 3% DMSO ($20 \ \mu$ L; i.p.). DZP – Diazepam (4 mg/kg; $20 \ \mu$ L; i.p.). FMZ – Flumazenil (4 mg/kg; $20 \ \mu$ L; i.p.). The values represent the mean \pm standard error of the mean (SEM) for 6 animals/group. ANOVA followed by Tukey test (****p< 0.0001 *vs.* Naïve or Vehicle); (# # #p<0.001 *vs.* DB chlorine; # # # #p<0.0001 *vs.* DZP or DB thiophene). The numbers above each column indicate percentage of the permanence in the clear zone (PCZ).

3.7. Protein modeling

Our NorA model (Figure 5A) contained 12-transmembrane (TM1 - TM12) helices as is common in the major facilitator superfamily (MFS). Between TM6 and TM7, a small piece of the chain can be seen, including residues 193-199, where a small helix was formed as well. According the template used[83], we presume that our homology model is in a outward-facing conformation. These structural characteristics are the basis for the H⁺-driven system responsible for alternating between the outward and inward states and the consequent expulsion of the substrate. A cleft entrance formed by TMs 1,2,5,7,6 and 11 gives access to a central cavity that allows the proton to enter and the substrate to leave the binding site. Deeper inside the cavity, a region surrounded by residues PHE16, ILE19, GLN51, MET109, ILE136, LEU218, PHE306, ARG310, THR 336, SER 337 and ASN 340 seems to be the main biding site (red spheres), however another two pockets could also anchor the substrate, one formed by residues ALA45, ALA 48, LEU49, MET52, PHE341, PRO344 and LEU 345 positioned laterally in relation to the center of the cavity (blue spheres), and other surrounded by ASN137, PHE140, LEU219, GLU222, THR225, ALA 243, SER299 and PHE303 residues (green spheres). As the protein is in the outward conformation, we argue that these two other pockets may be part of the substrate's exit path. In almost all crystalline structures of proton-driven MFS transporters, there are proton titratable amino acid residues in the central cavity. These titratable residues are important to switch outward conformation onto inward and vice versa[83]. In our NorA homology model, such residues are likely to be GLU222 and ARG310 because they are the only two residues in theory titratable inside the cavity.

The MepA model (Figure 5B) was also obtained in the outward-facing position as is presumed due to the template used. Its 3D structure also featured 12-transmembrane (TM1 - TM12) helices of which 1, 2, 5, 8 and 10 form the cleft entrance that gives access to the main pocket. The open cleft is made up of the residues ILE40, TYR41, ASP48, ILE52, ILE55, SER56, LEU57, LEU59, PRO60, LEU259, LEU 263, ASN 270, PHE271, ILE273, ALA274, ILE278, PHE280, ARG 281, PHE345 and ASP348 (gray spheres). This opening is the outlet path of the central binding site surrounded by residues MET25, PHE153, GLU156, ARG160, MET172, SER175, VAL176, THR201, SER251, MET254, GLN284, MET291, ALA292, CYS294, GLU295, PHE373, THR376, GLN380, ALA392 and GLN395 (orange spheres). It is possible to notice that the binding site is formed mainly by hydrophobic residues, to a lesser extent by hydrophilic ones and very few titratables such as GLU156, GLU295 and ARG160. The Ramachandran plot for both models is shown in the supplementary material.

Figure 5. NorA (A) and MepA (B) homology models in outward face conformation. The colored spheres represent the side chain of the residues.

3.8. Molecular docking

3.8.1. NorA and MepA

From the best conformation of the molecular docking, it was possible to study the protein-ligand interactions in the two efflux pumps. Binding affinities were estimated with DB ethoxy and DB chlorine showing lower binding scores than EtBr in NorA, while in MepA none performed better than EtBr. Table 4 summarizes the types of interactions that the compounds and EtBr formed with the residues of the NorA and MepA proteins as well as their binding affinity.

Table 4. Interaction sites and binding energy between the compounds in the best pose and the proteins of the efflux pumps.

Protein	Ligands .	Interactions with residues						Binding		
		Van der Walls	H-Bond	π-Sigma	Alkyl	π-alkyl	π-π stacked	π-π T-shaped	π-Sulfur	 Energy (kcal/mol)
NorA	EtBr	PHE16 ASN137 GLU222 PHE306 THR336	ASN340	ILE136	LEU218	LEU218	PHE140			-7.3
	DB thiophene	ILE12 GLU222 PHE306 THR336	ASN340			MET109 ILE136 LEU218	PHE16 PHE140			-5.8
	DB ethoxy		GLN51 ARG310	LEU218	ILE15 PHE16 ILE19 PHE140 PHE303	MET109 ILE136				-7.7
	DB Chlorine	ILE12 ASN137 SER215 GLU222 PHE306 THR336	ASN340	LEU218	ILE15 PHE16 PHE140 PHE303	MET109 ILE136				-7.7
МерА	EtBr	SER175 THR201	ASN179			MET172 VAL176		PHE153		-7.6
	DB thiophene	PHE152 PHE153 SER175 VAL176 THR201	MET172			VAL149				-6.3
	DB Chlorine	VAL176 PHE152	SER175			PHE62 PHE153		TYR35 PHE153	MET66	-7.1

It is noticed that in both cases, the compounds occupied essentially the same site of EtBr after simulation under the same conditions, although they did not interact in the same way with the residues. As can be seen in Figure 6, EtBr (A), DB thiophene (B), DB chlorine (C) and BD ethoxy (D) interact with several residues in common, *e.g.*, PHE16, ILE136, PHE140 and LEU218, indicating that the three bis-chalcones probably modulate the efflux of EtBr by competing in the same binding site. This site is contained in the region identified in Figure 5A by red spheres and has in common some residues with which Ciprofloxacin established more contacts in the molecular dynamics conducted by *Palazzotti* and colleagues[84]. This result is interesting because *Palazzotti* and colleagues used a NorA protein model in the inward-facing conformation in which our findings would correspond to a region equivalent to sites (c) and (d) showed by these authors. It is worth mentioning that residues GLN51, PHE140, LEU218, PHE303 and PHE306, belonging to the site where our compounds bind, are preserved from *E. coli* YajR transporter.

Figure 6. Interactions between EtBr (A), DB thiophene (B), DB chlorine (C) and DB ethoxy (D) in their best poses with NorA protein model.

DB thiophene and DB chlorine were found to be docked at the same cavity of EtBr in MepA, they interacted with several residues in common, *e.g.*, SER175, VAL176

and PHE 153, suggesting that the inhibition of EtBr efflux occurs by competition at the same binding site. Figure 7 shows the interactions between binding site residues and the compounds.

It is relevant to note that PRO26 has been shown to be very important in EtBr export pfMATE-mediated[85] and this residue is conserved in MepA model being occupied by PRO24, while the acidic residues ASP41 and ASP184, through protonated and non-protonated states, are involved in the antiport mechanism, essential for conformational change in pfMATE[85]. In this case only ASP184 was conserved in our model.

Figure 7. Interactions between EtBr (A), DB chlorine (B) and DB thiophene (C) in their best poses with MepA protein model.

Since DB thiophene showed potent EPI effect for antibiotics in the NorA and MepA efflux pumps, an analysis of the docking involving DB thiophene, Norfloxacin and Ciprofloxacin was performed, and the results are displayed in Figures 8A and 8B. Additionally, 2D ligand-protein interaction diagrams are provided in Figures 8C and 8D. DB thiophene formed on NorA model an H-bond in its carbonyl group with the residue ASN340, their aromatic rings interacted with PHE16 and PHE 140 through π - π T-shape and with MET109, ILE136 and LEU218 through π -Alkyl interaction. The residues ILE12, GLU222, PHE306 and THR336 contributed to the stabilization of the structure with *Van Der Walls* interactions. Its binding score was -5.8kcal/mol. This corroborates with an earlier report of DB thiophene in which the compound bound to essentially the same binding site and probably functions as a competitive inhibitor[41]. Norfloxacin was strongly stabilized by the H-bonds formed with GLN51 and ARG310 as well as interactions involving residues GLU222 and PHE140 due to the protonation state of the nitrogen of the piperacinic group. The binding affinity of Norfloxacin was said -6.7kcal/mol. Our results confirm the importance of residues GLN51, ARG310, GLU222 and PHE16 in the recognition of substrates by NorA because Dantas et al.[86] also described their interactions with Norfloxacin. These same residues played an important role in the binding site of complex NorA-reserpine, a standard inhibitor[87]. Moreover, they also proved to be a crucial part in the recognition pathway of the NorA-mediated efflux of Ciprofloxacin[84,88].

In MepA, DB thiophene and Ciprofloxacin binds roughly to the same region of the model. The bis-chalcone established *Van Der Waals* interactions with residues PHE152, PHE153, SER175, VAL176 and THR201, a π -Alkyl with VAL149 and an unconventional H-bonds with MET172, which gave it a binding score of -6.3kcal/mol. In addition to close contacts with residues PHE153, TYR35 and VAL176, Ciprofloxacin made H-bonds with ASN179 and ASN70 (unconventional), and a halogen interaction with residue GLU156. This allowed Ciprofloxacin to achieve better binding score than DB thiophene, -7.5kcal/mol. Thus, this result showed a good positioning to prevent the antibiotics binding to the MepA protein, reinforcing the results of modulating assays found by us before for K2068 overexpressing *mepA* gene[41]. Similar results corroborate the belief that the region we found is probably the MepA binding site. Rezende-Júnior et al.[89] obtained a docking of a chalcone in practically the same place, even using another template to build their MepA homology model, Xavier et al.[90] also reported similar results in the docking of chalcones, which occupied the same binding site as Ciprofloxacin.

Figure 8. (A) Norfloxacin binding site in NorA with DB thiophene competition. (B) Ciprofloxacin binding site in MepA with DB thiophene competition. (C) 2D ligand-protein interaction diagram of DB thiophene (left) and Norfloxacin (right) in NorA model. (D) 2D ligand-protein interaction diagram of DB thiophene (left) and Ciprofloxacin (right) in MepA model. All the poses shown have the lowest binding energy.

3.8.2. GABA_A

In Figure 9 is shown the compatibility of DB thiophene and DB chlorine with the GABA_A receptor at benzodiazepines binding site. DB thiophene achieved a binding score of -7.1 kcal/mol through *Van Der Waals*, π - π stacked and amino- π stacked interactions with α 1 subunit residues TYR58, ALA79, and MET57, and π -sulfur interactions with the γ 2 subunit residue TYR210. Likewise, the best docking pose of DB chlorine bound at the α 1- γ 2 interface and established close contacts with γ 2 subunit residues HIS102 (conventional hydrogen bond), LYS156 (π -sulfur) and SER205 (π -donor hydrogen bond) as well as interacted through π -donor hydrogen bond and π - π stacked with the α 1 subunit residues ASN60 and PHE77, respectively. In this case the binding score was -9.1 kcal/mol. Although the binding score should not be mistaken for affinity, both compounds appear to have stronger interactions with the benzodiazepines binding site. It is noteworthy that Diazepam, at the same binding site, through a redocking process, revealed in its best pose a binding score of -9.8 kcal/mol.

Figure 9. The best pose of DB thiophene (above) and DB chlorine (below) on the benzodiazepine site of the GABA_A receptor ($\alpha 1-\gamma 2$ interface of the extracellular domain - ECD). 2D ligand-protein interaction diagram is on the right.

4. Conclusions

Bis-chalcones are a class of compounds with great biological potential. Results found in the present study showed that DB chorine and DB thiophene were very active against colon carcinoma strain (HCT-116), suggesting a potential application as antitumoral drugs. The three bis-chalcones appear to be inhibitors of NorA-mediated EtBr efflux, while only DB chlorine and DB thiophene appear inhibit the MepA-mediated EtBr efflux. Docking studies showed that this inhibitory effect is likely due to competition for the same binding site. DB thiophene shows great potential as a modulator of the resistance to Norfloxacin and Ciprofloxacin, probably reducing their efflux by NorA and MepA efflux pumps, respectively. We proposed, through docking studies, that DB thiophene competes for the same binding site of Norfloxacin and Ciprofloxacin, acting as a competitive inhibitor of efflux pumps. DB chlorine and DB thiophene were nontoxic, also caused motor impairment in aZF suggesting a possible sedative action. Further investigation exhibited significant anxiolytic-like effect in adult zebrafish of both compounds, modulated via the GABAergic system.

Declaration of Competing Interest

The authors declare no conflict of interest.

References

- F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA. Cancer J. Clin. 68 (2018) 394–424. doi:10.3322/caac.21492.
- [2] E. Tacconelli, M.D. Pezzani, Public health burden of antimicrobial resistance in Europe, Lancet Infect. Dis. 19 (2019) 4–6. doi:10.1016/S1473-3099(18)30648-0.
- J. Liu, W.M. Zhai, Y.X. Yang, J.L. Shi, Q.T. Liu, G.L. Liu, N. Fang, J. Li, J.Y. Guo, GABA and 5-HT systems are implicated in the anxiolytic-like effect of spinosin in mice, Pharmacol. Biochem. Behav. 128 (2015) 41–49. doi:10.1016/j.pbb.2014.11.003.
- [4] M.N. Gomes, E.N. Muratov, M. Pereira, J.C. Peixoto, L.P. Rosseto, P.V.L. Cravo, C.H. Andrade, B.J. Neves, Chalcone derivatives: Promising starting points for drug design, Molecules. 22 (2017). doi:10.3390/molecules22081210.
- J.H. Cheng, C.F. Hung, S.C. Yang, J.P. Wang, S.J. Won, C.N. Lin, Synthesis and cytotoxic, anti-inflammatory, and anti-oxidant activities of 2',5'-dialkoxylchalcones as cancer chemopreventive agents, Bioorganic Med. Chem. 16 (2008) 7270–7276. doi:10.1016/j.bmc.2008.06.031.
- [6] J. Li, D. Li, Y. Xu, Z. Guo, X. Liu, H. Yang, L. Wang, L. Wu, Design, synthesis, biological evaluation, and molecular docking of chalcone derivatives as antiinflammatory agents, Bioorg. Med. Chem. Lett. 27 (2017) 602–606. doi:10.1016/j.bmcl.2016.12.008.
- F. Inamullah, I. Fatima, S. Khan, M.H. Kazmi, A. Malik, R.B. Tareen, T. Abbas, New antimicrobial flavonoids and chalcone from Colutea armata, Arch. Pharm. Res. 40 (2017) 915–920. doi:10.1007/s12272-017-0901-6.
- [8] H.N. ElSohly, A.S. Joshi, A.C. Nimrod, L.A. Walker, A.M. Clark, Antifungal Chalcones from Maclura tinctoria, Plant Med. 67 (2001) 87–89.

- [9] N. Aoki, M. Muko, E. Ohta, S. Ohta, C-geranylated chalcones from the stems of Angelica keiskei with superoxide-scavenging activity, J. Nat. Prod. 71 (2008) 1308–1310. doi:10.1021/np800187f.
- [10] A. Modzelewska, C. Pettit, G. Achanta, N.E. Davidson, P. Huang, S.R. Khan, Anticancer activities of novel chalcone and bis-chalcone derivatives, Bioorganic Med. Chem. 14 (2006) 3491–3495. doi:10.1016/j.bmc.2006.01.003.
- [11] H. Mirzaei, M. Keighobadi, S. Emami, An Overview of Anticancer Chalcones with Apoptosis Inducing Activity, J. Maz. Univ. Med. Sci. 26 (2017) 254–268.
- [12] M. Chen, S.B. Christensen, J. Blom, E. Lemmich, L. Nadelmann, K. Fich, T.G. Theander, A. Kharazmi, Licochalcone A, a novel antiparasitic agent with potent activity against human pathogenic protozoan species of Leishmania, Antimicrob. Agents Chemother. 37 (1993) 2550–2556. doi:10.1128/AAC.37.12.2550.
- J.N. Domínguez, C. León, J. Rodrigues, N.G. De Domínguez, J. Gut, P.J.
 Rosenthal, Synthesis and evaluation of new antimalarial phenylurenyl chalcone derivatives, J. Med. Chem. 48 (2005) 3654–3658. doi:10.1021/jm0582080.
- B. Salehi, C. Quispe, I. Chamkhi, N. El Omari, A. Balahbib, J. Sharifi-Rad, A. Bouyahya, M. Akram, M. Iqbal, A.O. Docea, C. Caruntu, G. Leyva-Gómez, A. Dey, M. Martorell, D. Calina, V. López, F. Les, Pharmacological Properties of Chalcones: A Review of Preclinical Including Molecular Mechanisms and Clinical Evidence, Front. Pharmacol. 11 (2021). doi:10.3389/fphar.2020.592654.
- C. Zhuang, W. Zhang, C. Sheng, W. Zhang, C. Xing, Z. Miao, Chalcone: A Privileged Structure in Medicinal Chemistry, Chem. Rev. 117 (2017) 7762–7810. doi:10.1021/acs.chemrev.7b00020.
- [16] N. Nohut Maşlakcı, A. Biçer, G. Turgut Cin, A. Uygun Öksüz, Electrochromic properties of some bis-chalcone derivatives-based nanofibers, J. Appl. Polym. Sci. 135 (2018) 25–30. doi:10.1002/app.46010.
- [17] S. Shettigar, K. Chandrasekharan, G. Umesh, B.K. Sarojini, B. Narayana, Studies on nonlinear optical parameters of bis-chalcone derivatives doped polymer, Polymer (Guildf). 47 (2006) 3565–3567. doi:10.1016/j.polymer.2006.03.062.
- [18] N.S.K. Reddy, R. Badam, R. Sattibabu, M. Molli, V.S. Muthukumar, S.S.S. Sai,

G.N. Rao, Synthesis, characterization and nonlinear optical properties of symmetrically substituted dibenzylideneacetone derivatives, Chem. Phys. Lett. 616–617 (2014) 142–147. doi:10.1016/j.cplett.2014.10.043.

- [19] A.T. Bale, K.M. Khan, U. Salar, S. Chigurupati, T. Fasina, F. Ali, S.S. Nanda, Kanwal, A. Wadood, M. Taha, M. Ghufran, S. Perveen, Chalcones and bischalcones: As potential α-amylase inhibitors; synthesis, in vitro screening, and molecular modelling studies, Bioorg. Chem. 79 (2018) 179–189. doi:10.1016/j.bioorg.2018.05.003.
- [20] L.A. Hull, The Dibenzalacetone Reaction Revisited, J. Chem. Educ. 78 (2001) 226–227. doi:10.1021/ed078p226.
- [21] T.A.-K. Saleh, Synthesis and Characterization of Chalcone Derivatives from Furfural, Chem. Adv. Mater. 2 (2017) 44–52. http://issrpublishing.com/cam/.
- [22] G. Liang, L. Shao, Y. Wang, C. Zhao, Y. Chu, J. Xiao, Y. Zhao, X. Li, S. Yang, Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents, Bioorganic Med. Chem. 17 (2009) 2623–2631. doi:10.1016/j.bmc.2008.10.044.
- [23] A. Rani, A. Anand, K. Kumar, V. Kumar, Recent developments in biological aspects of chalcones: the odyssey continues, Expert Opin. Drug Discov. 14 (2019) 249–288. doi:10.1080/17460441.2019.1573812.
- [24] A.M. Asiri, S.A. Khan, Synthesis and anti-bacterial activities of a bis-chalcone derived from thiophene and its bis-cyclized products, Molecules. 16 (2011) 523–531. doi:10.3390/molecules16010523.
- [25] S.M. Tala-tapeh, N. Mahmoodi, A. Vaziri, Synthesis of bis-chalcones based on 5,
 5'-methylene bis(2-hydroxybenzaldehyde) and screening their antibacterial activity, J. Appl. Chem. 9 (2015) 57–64.
- [26] P.M. Sivakumar, S. Priya, M. Doble, Synthesis, biological evaluation, mechanism of action and quantitative structure-activity relationship studies of chalcones as antibacterial agents, Chem. Biol. Drug Des. 73 (2009) 403–415. doi:10.1111/j.1747-0285.2009.00793.x.
- [27] Costa S. S., Viveiros M., Amaral L., Couto I., Multidrug efflux pumps in

Staphylococcus aureus: an update., Open Microbiol. J. 7 (2013) 59–71. doi:10.2174/1874285801307010059.

- [28] P. Joshi, S. Singh, A. Wani, S. Sharma, S.K. Jain, B. Singh, B.D. Gupta, N.K. Satti, S. Koul, I.A. Khan, A. Kumar, S.B. Bharate, R.A. Vishwakarma, Osthol and curcumin as inhibitors of human Pgp and multidrug efflux pumps of Staphylococcus aureus: reversing the resistance against frontline antibacterial drugs, Med. Chem. Commun. 5 (2014) 1540–1547. doi:10.1039/C4MD00196F.
- [29] S.R. Tintino, C.D.M. Oliveira-Tintino, F.F. Campina, R.L.P. Silva, M. do S. Costa, I.R.A. Menezes, J.T. Calixto-Júnior, J.P. Siqueira-Junior, H.D.M. Coutinho, T.C. Leal-Balbino, V.Q. Balbino, Evaluation of the tannic acid inhibitory effect against the NorA efflux pump of Staphylococcus aureus, Microb. Pathog. 97 (2016) 9–13. doi:10.1016/j.micpath.2016.04.003.
- [30] A.A. Neyfakh, C.M. Borsch, G.W. Kaatz, Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter, Antimicrob. Agents Chemother. 37 (1993) 128–129. doi:10.1128/AAC.37.1.128.
- [31] G.W. Kaatz, S.M. Seo, C.A. Ruble, Mechanisms of fluoroquinolone resistance in staphylococcus aureus, J. Infect. Dis. 163 (1991) 1080–1086. doi:10.1093/infdis/163.5.1080.
- [32] G.W. Kaatz, F. McAleese, S.M. Seo, Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein, Antimicrob. Agents Chemother. 49 (2005) 1857–1864. doi:10.1128/AAC.49.5.1857-1864.2005.
- [33] B.D. Schindler, P. Jacinto, G.W. Kaatz, Inhibition of drug efflux pumps in Staphylococcus aureus: current status of potentiating existing antibiotics, Futur. Microbiol. 8 (2013) 491–507. doi:10.11250/chemotherapy1953.16.843.
- [34] B. Zechini, I. Versace, Inhibitors of Multidrug Resistant Efflux Systems in Bacteria, Recent Pat. Antiinfect. Drug Discov. 4 (2009) 37–50. doi:10.2174/157489109787236256.
- [35] S. Masiulis, R. Desai, T. Uchański, I. Serna Martin, D. Laverty, D. Karia, T. Malinauskas, J. Zivanov, E. Pardon, A. Kotecha, J. Steyaert, K.W. Miller, A.R. Aricescu, GABAA receptor signalling mechanisms revealed by structural

pharmacology, Nature. 565 (2019) 454-459. doi:10.1038/s41586-018-0832-5.

- [36] J. Higgs, C. Wasowski, A. Marcos, M. Jukič, C.H. Paván, S. Gobec, F. de Tezanos Pinto, N. Colettis, M. Marder, Chalcone derivatives: synthesis, in vitro and in vivo evaluation of their anti-anxiety, anti-depression and analgesic effects, Heliyon. 5 (2019). doi:10.1016/j.heliyon.2019.e01376.
- [37] J. da C. Xavier, F.W.Q. Almeida-Neto, P.T. da Silva, E.S. Marinho, M.K.A. Ferreira, F.E.A. Magalhães, C.E.S. Nogueira, P.N. Bandeira, J.E.S.A. de Menezes, A.M.R. Teixeira, H.S. dos Santos, Structural characterization, electronic properties, and anxiolytic-like effect in adult zebrafish (Danio rerio) of cinnamaldehyde chalcone, J. Mol. Struct. 1222 (2020). doi:10.1016/j.molstruc.2020.128954.
- [38] H. Jamal, W.H. Ansari, S.J. Rizvi, Evaluation of chalcones A flavonoid subclass, for, their anxiolytic effects in rats using elevated plus maze and open field behaviour tests, Fundam. Clin. Pharmacol. 22 (2008) 673–681. doi:10.1111/j.1472-8206.2008.00639.x.
- [39] M.K.A. Ferreira, A.W. da Silva, F.C.O. Silva, C.L.A. Holanda, S.M. Barroso, J. dos R. Lima, A.E. Vieira Neto, A.R. Campos, P.N. Bandeira, H.S. dos Santos, T.L.G. de Lemos, S.M.C. Siqueira, F.E.A. Magalhães, J.E.S.A. de Menezes, Anxiolytic-like effect of chalcone N-{(4'-[(E)-3-(4-fluorophenyl)-1-(phenyl) prop-2-en-1-one]} acetamide on adult zebrafish (Danio rerio): Involvement of the GABAergic system, Behav. Brain Res. 374 (2019) 3–8. doi:10.1016/j.bbr.2019.03.040.
- [40] M.M. de Oliveira, C.E.S. Nogueira, F.W.Q. Almeida-Neto, H.S. Santos, A.M.R. Teixeira, P. de Lima-Neto, E.S. Marinho, M.O. de Moraes, C. Pessoa, F.W.A. Barros-Nepomuceno, Full Spectroscopic Characterization and Cytotoxicity Activity of Synthetic Dibenzalacetone Derivatives., J. Mol. Struct. 1231 (2021) 129670. doi:10.1016/j.molstruc.2020.129670.
- [41] M.M. Oliveira, H.S. Santos, H.D.M. Coutinho, P.N. Bandeira, P.T. da Silva, T.S. Freitas, J.E. Rocha, J.C. Xavier, F.F. Campina, C.R.S. Barbosa, J.B. Araújo Neto, R.L.S. Pereira, M.M.C. Silva, D.F. Muniz, A.M.R. Teixeira, V.M. Frota, T.H.S. Rodrigues, A.M. Amado, M.P.M. Marques, L.A.E. Batista de Carvalho, C.E.S.

Nogueira, Spectroscopic characterization and efflux pump modulation of a thiophene curcumin derivative, J. Mol. Struct. 1215 (2020). doi:10.1016/j.molstruc.2020.128291.

- [42] T. Mosmann, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, J. Immunol. Methods. 65 (1983) 55–63. doi:10.1016/0022-1759(83)90303-4.
- [43] WIKLER, MA, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically : approved standard, CLSI. 26 (2006) M7-A7. http://ci.nii.ac.jp/naid/20001404762/en/ (acessado 2 de julho de 2019).
- [44] A.A. Neyfakh, C.M. Borsch, G.W. Kaatz, Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter, Antimicrob. Agents Chemother. 37 (1993) 128–129. doi:10.1128/AAC.37.1.128.
- [45] H. Yoshida, M. Bogaki, S. Nakamura, K. Ubukata, M. Konno, Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones, J. Bacteriol. 172 (1990) 6942–6949. doi:10.1128/jb.172.12.6942-6949.1990.
- [46] G.W. Kaatz, S.M. Seo, C.A. Ruble, Efflux-mediated fluoroquinolone resistance in Staphylococcus aureus, Antimicrob. Agents Chemother. 37 (1993) 1086–1094. doi:10.1128/AAC.37.5.1086.
- P. Petersen, A. Ruzin, S.J. Projan, E. Murphy, P.A. Bradford, F. McAleese, P.M. Dunman, A Novel MATE Family Efflux Pump Contributes to the Reduced Susceptibility of Laboratory-Derived Staphylococcus aureus Mutants to Tigecycline, Antimicrob. Agents Chemother. 49 (2005) 1865–1871. doi:10.1128/aac.49.5.1865-1871.2005.
- [48] J.M. Pagès, M. Masi, J. Barbe, Inhibitors of efflux pumps in Gram-negative bacteria, Trends Mol. Med. 11 (2005) 382–389.
 doi:10.1016/j.molmed.2005.06.006.
- [49] M. Malléa, J. Chevalier, A. Eyraud, J.M. Pagès, Inhibitors of antibiotic efflux pump in resistant Enterobacter aerogenes strains, Biochem. Biophys. Res. Commun. 293 (2002) 1370–1373. doi:10.1016/S0006-291X(02)00404-7.

- [50] S. Sabatini, G.W. Kaatz, G.M. Rossolini, D. Brandini, A. Fravolini, From phenothiazine to 3-phenyl-1,4-benzothiazine derivatives as inhibitors of the Staphylococcus aureus NorA multidrug efflux pump, J. Med. Chem. 51 (2008) 4321–4330. doi:10.1021/jm701623q.
- [51] G.W. Kaatz, V. V. Moudgal, S.M. Seo, J.E. Kristiansen, Phenothiazines and thioxanthenes inhibit multidrug efflux pump activity in Staphylococcus aureus, Antimicrob. Agents Chemother. 47 (2003) 719–726. doi:10.1128/AAC.47.2.719-726.2003.
- [52] Concea., Resolução Normativa nº 37 Diretriz da Prática de Eutanásia do Conselho Nacional de Controle de Experimentação Animal., (2018) Diário Oficial da União nº 36, Seção 1, pág. 5.
- [53] S.P. Ekambaram, S.S. Perumal, S. Pavadai, Anti-inflammatory effect of Naravelia zeylanica DC via suppression of inflammatory mediators in carrageenan-induced abdominal oedema in zebrafish model, Inflammopharmacology. 25 (2017) 147–158. doi:10.1007/s10787-016-0303-2.
- [54] O. Arellano-Aguilar, S. Solis-Angeles, L. Serrano-García, R. Morales-Sierra, E. Mendez-Serrano, A. Montero-Montoya, Use of the Zebrafish Embryo Toxicity Test for Risk Assessment Purpose: Case Study, J. Fish. 9 (2015) 051–062. https://www.fisheriessciences.com/fisheries-aqua/use-of-the-zebrafish-embryo-toxicity-test-for-risk-assessment-purpose-case-study.php?aid=8192.
- [55] C.K. Benneh, R.P. Biney, P.K. Mante, A. Tandoh, D.W. Adongo, E. Woode, Maerua angolensis stem bark extract reverses anxiety and related behaviours in zebrafish — Involvement of GABAergic and 5-HT systems, J. Ethnopharmacol. 207 (2017) 129–145. doi:10.1016/j.jep.2017.06.012.
- [56] F.E.A. Magalhães, C.Á.P.B. De Sousa, S.A.A.R. Santos, R.B. Menezes, F.L.A. Batista, Â.O. Abreu, M.V. De Oliveira, L.F.W.G. Moura, R.D.S. Raposo, A.R. Campos, Adult Zebrafish (Danio rerio): An Alternative Behavioral Model of Formalin-Induced Nociception, Zebrafish. 14 (2017) 422–429. doi:10.1089/zeb.2017.1436.
- [57] D.L. Gebauer, N. Pagnussat, Â.L. Piato, I.C. Schaefer, C.D. Bonan, D.R. Lara, Effects of anxiolytics in zebrafish: Similarities and differences between

benzodiazepines, buspirone and ethanol, Pharmacol. Biochem. Behav. 99 (2011) 480–486. doi:10.1016/j.pbb.2011.04.021.

- [58] M. Biasini, S. Bienert, A. Waterhouse, K. Arnold, G. Studer, T. Schmidt, F. Kiefer, T.G. Cassarino, M. Bertoni, L. Bordoli, T. Schwede, SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information, Nucleic Acids Res. 42 (2014) 1–7. doi:10.1093/nar/gku340.
- [59] A. Bateman, M.J. Martin, C. O'Donovan, M. Magrane, R. Apweiler, E. Alpi, R. Antunes, J. Arganiska, B. Bely, M. Bingley, C. Bonilla, R. Britto, B. Bursteinas, G. Chavali, E. Cibrian-Uhalte, A. Da Silva, M. De Giorgi, T. Dogan, F. Fazzini, P. Gane, L.G. Castro, P. Garmiri, E. Hatton-Ellis, R. Hieta, R. Huntley, D. Legge, W. Liu, J. Luo, A. Macdougall, P. Mutowo, A. Nightingale, S. Orchard, K. Pichler, D. Poggioli, S. Pundir, L. Pureza, G. Qi, S. Rosanoff, R. Saidi, T. Sawford, A. Shypitsyna, E. Turner, V. Volynkin, T. Wardell, X. Watkins, H. Zellner, A. Cowley, L. Figueira, W. Li, H. McWilliam, R. Lopez, I. Xenarios, L. Bougueleret, A. Bridge, S. Poux, N. Redaschi, L. Aimo, G. Argoud-Puy, A. Auchincloss, K. Axelsen, P. Bansal, D. Baratin, M.C. Blatter, B. Boeckmann, J. Bolleman, E. Boutet, L. Breuza, C. Casal-Casas, E. De Castro, E. Coudert, B. Cuche, M. Doche, D. Dornevil, S. Duvaud, A. Estreicher, L. Famiglietti, M. Feuermann, E. Gasteiger, S. Gehant, V. Gerritsen, A. Gos, N. Gruaz-Gumowski, U. Hinz, C. Hulo, F. Jungo, G. Keller, V. Lara, P. Lemercier, D. Lieberherr, T. Lombardot, X. Martin, P. Masson, A. Morgat, T. Neto, N. Nouspikel, S. Paesano, I. Pedruzzi, S. Pilbout, M. Pozzato, M. Pruess, C. Rivoire, B. Roechert, M. Schneider, C. Sigrist, K. Sonesson, S. Staehli, A. Stutz, S. Sundaram, M. Tognolli, L. Verbregue, A.L. Veuthey, C.H. Wu, C.N. Arighi, L. Arminski, C. Chen, Y. Chen, J.S. Garavelli, H. Huang, K. Laiho, P. McGarvey, D.A. Natale, B.E. Suzek, C.R. Vinayaka, Q. Wang, Y. Wang, L.S. Yeh, M.S. Yerramalla, J. Zhang, UniProt: A hub for protein information, Nucleic Acids Res. 43 (2015) D204–D212. doi:10.1093/nar/gku989.
- [60] C.J. Williams, J.J. Headd, N.W. Moriarty, M.G. Prisant, L.L. Videau, L.N. Deis, V. Verma, D.A. Keedy, B.J. Hintze, V.B. Chen, S. Jain, S.M. Lewis, W.B.A. Iii, J. Snoeyink, P.D. Adams, S.C. Lovell, J.S. Richardson, D.C. Richardson, MolProbity: More and better reference data for improved all-atom structure validation, Protein Sci. 27 (2017) 293–315. doi:10.1002/pro.3330.

- [61] K. Berka, O. Hanák, D. Sehnal, P. Banáš, V. Navrátilová, D. Jaiswal, C.M. Ionescu, R. Svobodová Vařeková, J. Koča, M. Otyepka, MOLEonline 2.0: Interactive web-based analysis of biomacromolecular channels, Nucleic Acids Res. 40 (2012) 222–227. doi:10.1093/nar/gks363.
- [62] E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, T.E. Ferrin, UCSF Chimera - A visualization system for exploratory research and analysis, J. Comput. Chem. 25 (2004) 1605–1612. doi:10.1002/jcc.20084.
- [63] PDB, Protein Data Bank, ([s.d.]). https://www.rcsb.org/ (acessado 25 de março de 2021).
- [64] O. Trott, A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2010) 455–461. doi:doi.org/10.1002/jcc.21334.
- [65] J.J.P. Stewart, Optimization of parameters for semiempirical methods VI: More modifications to the NDDO approximations and re-optimization of parameters, J. Mol. Model. 19 (2013) 1–32. doi:10.1007/s00894-012-1667-x.
- [66] S. Zhu, C.M. Noviello, J. Teng, R.M. Walsh, J.J. Kim, R.E. Hibbs, Structure of a human synaptic GABAA receptor, Nature. 559 (2018) 67–88.
 doi:10.1038/s41586-018-0255-3.
- [67] V. Sharma, V. Kumar, P. Kumar, Heterocyclic Chalcone Analogues as Potential Anticancer Agents, Anticancer. Agents Med. Chem. 13 (2013) 422–432. doi:10.2174/1871520611313030006.
- [68] A. De Vasconcelos, V.F. Campos, F. Nedel, F.K. Seixas, O.A. Dellagostin, K.R. Smith, C.M.P. De Pereira, F.M. Stefanello, T. Collares, A.G. Barschak, Cytotoxic and apoptotic effects of chalcone derivatives of 2-acetyl thiophene on human colon adenocarcinoma cells, Cell Biochem. Funct. 31 (2013) 289–297. doi:10.1002/cbf.2897.
- [69] M.M. Ghorab, M.S. Bashandy, M.S. Alsaid, Novel thiophene derivatives with sulfonamide, isoxazole, benzothiazole, quinoline and anthracene moieties as potential anticancer agents, Acta Pharm. 64 (2014) 419–431. doi:10.2478/acph-2014-0035.

- [70] S. Raghavan, P. Manogaran, B. Kalpattu Kuppuswami, G. Venkatraman, K.K. Gadepalli Narasimha, Synthesis and anticancer activity of chalcones derived from vanillin and isovanillin, Med. Chem. Res. 24 (2015) 4157–4165. doi:10.1007/s00044-015-1453-2.
- [71] J.G. Holler, H.C. Slotved, P. Molgaard, C.E. Olsen, S.B. Christensen, Chalcone inhibitors of the NorA efflux pump in Staphylococcus aureus whole cells and enriched everted membrane vesicles, Bioorganic Med. Chem. 20 (2012) 4514– 4521. doi:10.1016/j.bmc.2012.05.025.
- J. Fournier dit Chabert, B. Marquez, L. Neville, L. Joucla, S. Broussous, P. Bouhours, E. David, S. Pellet-Rostaing, B. Marquet, N. Moreau, M. Lemaire, Synthesis and evaluation of new arylbenzo[b]thiophene and diarylthiophene derivatives as inhibitors of the NorA multidrug transporter of Staphylococcus aureus, Bioorganic Med. Chem. 15 (2007) 4482–4497. doi:10.1016/j.bmc.2007.04.023.
- [73] B.D. Schindler, G.W. Kaatz, Multidrug efflux pumps of Gram-positive bacteria, Drug Resist. Updat. 27 (2016) 1–13. doi:10.1016/j.drup.2016.04.003.
- [74] A.M. Siebel, C.D. Bonan, R.S. da Silva, Zebrafish como modelo para estudos comportamentais., in: R.R. Resende, C.R. Soccol (Orgs.), Biotecnol. Apl. à saúde Fundam. e Apl., 1st ed, Blucher, 2015: p. 15.
- [75] Y.J. Dai, Y.F. Jia, N. Chen, W.P. Bian, Q.K. Li, Y.B. Ma, Y.L. Chen, D.S. Pei, Zebrafish as a model system to study toxicology, Environ. Toxicol. Chem. 33 (2014) 11–17. doi:10.1002/etc.2406.
- [76] A.J. Hill, H. Teraoka, W. Heideman, R.E. Peterson, Zebrafish as a model vertebrate for investigating chemical toxicity, Toxicol. Sci. 86 (2005) 6–19. doi:10.1093/toxsci/kfi110.
- [77] D.B. ROSEMBERG, Avaliação de parâmetros bioquímicos e comportamentais em peixe-zebra (Danio rerio): uma abordagem sobre o sistema purinérgico, colinérgico e efeitos promovidos pela taurina no modelo de exposição aguda ao etanol, Universidade Federal do Rio Grande do Sul, 2011.
- [78] F. Ahmad, M.K. Richardson, Exploratory behaviour in the open field test adapted for larval zebrafish: Impact of environmental complexity, Behav. Processes. 92

(2013) 88–98. doi:10.1016/j.beproc.2012.10.014.

- [79] J. Cachat, A. Stewart, E. Utterback, P. Hart, S. Gaikwad, K. Wong, E. Kyzar, N.
 Wu, A. V. Kalueff, Three-dimensional neurophenotyping of adult zebrafish behavior, PLoS One. 6 (2011). doi:10.1371/journal.pone.0017597.
- [80] F.C.O. Silva, J.E.S.A. de Menezes, M.K.A. Ferreira, A.W. da Silva, C.L.A.
 Holanda, J. dos Reis Lima, A.R. Campos, F.F.V. Evaristo, E.H. Teixeira, F.E.A.
 Magalhães, P.N. Bandeira, H.S. dos Santos, Antinociceptive activity of 3β-6β16β-trihydroxylup-20 (29)-ene triterpene isolated from Combretum leprosum
 leaves in adult zebrafish (Danio rerio), Biochem. Biophys. Res. Commun. 533
 (2020) 362–367. doi:10.1016/j.bbrc.2020.07.107.
- [81] C. Maximino, T. Marques De Brito, C.A.G. De Mattos Dias, A. Gouveia, S. Morato, Scototaxis as anxiety-like behavior in fish, Nat. Protoc. 5 (2010) 221–228. doi:10.1038/nprot.2009.225.
- [82] C. Maximino, T.M. de Brito, R. Colmanetti, A.A.A. Pontes, H.M. de Castro, R.I.T. de Lacerda, S. Morato, A. Gouveia, Parametric analyses of anxiety in zebrafish scototaxis, Behav. Brain Res. 210 (2010) 1–7. doi:10.1016/j.bbr.2010.01.031.
- [83] D. Jiang, Y. Zhao, X. Wang, J. Fan, J. Heng, X. Liu, W. Feng, X. Kang, B. Huang, J. Liu, X.C. Zhang, Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A, Proc. Natl. Acad. Sci. 110 (2013) 14664–14669. doi:10.1073/pnas.1308127110.
- [84] D. Palazzotti, M. Bissaro, G. Bolcato, A. Astolfi, T. Felicetti, S. Sabatini, M. Sturlese, V. Cecchetti, M.L. Barreca, S. Moro, Deciphering the molecular recognition mechanism of multidrug resistance staphylococcus aureus nora efflux pump using a supervised molecular dynamics approach, Int. J. Mol. Sci. 20 (2019). doi:10.3390/ijms20164041.
- [85] Y. Tanaka, C.J. Hipolito, A.D. Maturana, K. Ito, T. Kuroda, T. Higuchi, T. Katoh, H.E. Kato, M. Hattori, K. Kumazaki, T. Tsukazaki, R. Ishitani, H. Suga, O. Nureki, Structural basis for the drug extrusion mechanism by a MATE multidrug transporter, Nature. 496 (2013) 247–251. doi:10.1038/nature12014.
- [86] N. Dantas, T.M. de Aquino, J.X. de Araújo-Júnior, E. da Silva-Júnior, E.A.

Gomes, A.A.S. Gomes, J.P. Siqueira-Júnior, F.J.B. Mendonça Junior, Aminoguanidine hydrazones (AGH's) as modulators of norfloxacin resistance in Staphylococcus aureus that overexpress NorA efflux pump, Chem. Biol. Interact. 280 (2018) 8–14. doi:10.1016/j.cbi.2017.12.009.

- [87] N.P. Kalia, P. Mahajan, R. Mehra, A. Nargotra, J.P. Sharma, S. Koul, I.A. Khan, Capsaicin, a novel inhibitor of the NorA efflux pump, reduces the intracellular invasion of Staphylococcus aureus, J. Antimicrob. Chemother. 67 (2012) 2401– 2408. doi:10.1093/jac/dks232.
- [88] B.V. Bhaskar, T.M. Chandra Babu, N.V. Reddy, W. Rajendra, Homology modeling, molecular dynamics, and virtual screening of nora efflux pump inhibitors of Staphylococcus aureus, Drug Des. Devel. Ther. 10 (2016) 3237– 3252. doi:10.2147/DDDT.S113556.
- [89] L.M. Rezende-Júnior, L.M. de S. Andrade, A.L.A.B. Leal, A.B. de S. Mesquita, A.L.P. de A. dos Santos, J. de S.L. Neto, J.P. Siqueira-Júnior, C.E.S. Nogueira, G.W. Kaatz, H.D.M. Coutinho, N. Martins, C.Q. da Rocha, H.M. Barreto, Chalcones Isolated from Arrabidaea brachypoda Flowers as Inhibitors of NorA and MepA Multidrug Efflux Pumps of Staphylococcus aureus, Antibiotics. 9 (2020) 351. doi:10.3390/antibiotics9060351.
- [90] J. da Cunha Xavier, F.W. de Q. Almeida-Neto, P.T. da Silva, A.P. de Sousa, E.S. Marinho, M.M. Marinho, J.E. Rocha, P.R. Freitas, A.C.J. de Araújo, T.S. Freitas, C.E.S. Nogueira, P. de Lima-Neto, P.N. Bandeira, A.M.R. Teixeira, H.D.M. Coutinho, H.S. dos Santos, Structural characterization, DFT calculations, ADMET studies, antibiotic potentiating activity, evaluation of efflux pump inhibition and molecular docking of chalcone (E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one, J. Mol. Struct. 1227 (2021) 129692. doi:10.1016/j.molstruc.2020.129692.

Supplementary Material

Cytotoxicity Activity, Efflux Pump Inhibition, Anxiolytic-Like Effect and Molecular Docking Studies of Synthetic Bis-chalcones

Mauro M. de Oliveira^{a*}, Helcio S. Santos^{a,b}, Alexandre M. R. Teixeira^{a,c}, Raimundo L. S. Pereira^a, Thiago S. de Freitas^a, Janaina E. Rocha^a, Paulo N. Bandeira^b, João P. da Hora^b, Antônio L. A. B. Leal^a, Carlos E. S. Nogueira^{a,c}.

^a Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil

^b Science and Technology Centre - Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil

^c Department of physics, Regional University of Cariri, Crato, CE, Brazil

^{*}Corresponding author. Department of Biological Chemistry, Regional University of

Cariri, Campus Pimenta II, CEP: 63.100-000, Crato, CE, Brazil.

E-mail addresses: mauropandi@gmail.com

Figure S1. Ramachandran plot for NorA homology model.

Figure S2. Ramachandran plot for MepA homology model

CAPÍTULO 5

5. CONSIDERAÇÕES FINAIS 5.1. DISCUSSÃO GERAL

Três derivados da dibenzalacetona (1E,4E)-1,5-di(tiofen-2-il)penta-1,4-dien-3-ona (DB tiofeno), (1E,4E)-1,5-bis(4-etoxifenil)penta-1,4-dien-3-ona (DB etoxi) e (1E,4E)-1,5-bis(4clorofenil)penta-1,4-dien-3-ona (DB cloro) foram obtidos por dupla condensação de Claisen-Schmidt. Suas estruturas químicas foram determinadas por RMN e EM obtendo-se excelente correspondência com o esperado. Esses resultados confirmaram a estereoquímica tipo E das duplas ligações para os três compostos. A partir dos estudos de modelagem molecular utilizando cálculos quânticos, identificou-se 72, 132 e 90 modos normais vibração para DB tiofeno, DB etoxi e DB cloro, respectivamente. A partir da descrição de cada modo normal e posterior comparação com os modos vibracionais experimentais foi possível verificar que o perfil vibracional do DB tiofeno combina melhor com o confórmero do tipo cis-trans embora as diferenças com os outros tenham sido diminutas. Isto é reforçado quando comparamos o momento dipolo experimental com o momento dipolo teórico dessa conformação. No caso do DB etoxi e do DB cloro, não há outros confórmeros devido à rotação das ligações simples existentes entre os anéis aromáticos e os grupos enonas, todavia em função da descrição detalhada dos modos vibracionais desses compostos foi possível notar que o composto DB etoxi apresentava uma estutura cristalina hidratada, porém não se sabe exatamente a proporção de moléculas de água por célula unitária do cristal. De todo modo, a completa atribuição dos modos de vibração desse três compostos é bastante relevante e até onde se sabe foi inédita.

O composto DB tiofeno mostrou ser uma molécula bastante relevante e com amplo espectro de atividade biológica. Ela exibiu alta redução da viabilidade célular de células tumorais de colon (HCT-116) em 85,24% e redução moderada da viabilidade em células tumorais de próstata (PC3) com 43,57% de redução. Ainda, apresentou pouca redução da viabilidade celular frente à linhagem de glioblastoma (SNB), em que alcançou o valor de 9,83%. Isto é expressívo uma vez que foi o único composto desse estudo que obteve alguma atividade nesse tipo agressivo de tumor cerebral. Esse composto também é um excelente candidato à inibidor de bomba de efluxo, inibiu o efluxo de EtBr em 29,3% contra a cepa SA1199B que superexpressa a bomba de efluxo NorA, e em 43,9% contra a cepa K2068 que superexpressa a bomba de efluxo MepA. Além disso, reduziu a CIM do norfloxacino contra SA1199B em quase 30%, e em 50% do ciprofloxacino contra K2068. Estudos de docking molecular revelaram que provavelmente essa inibição se dá por competição no mesmo sítio de ligação desses substratos nas bombas de efluxo. Continuando as potencialidades desse composto, identificamos uma ação redutora da locomoção em modelos animais *zebrafish*. Atingiu-se uma redução da locomoção de 84,81%, 65,79% e 49,66% para doses de 4 mg/kg, 20 mg/kg e 40 mg/kg, respectivamente. Essa redução foi produzida devido ao efeito ansiolítico do DB tiofeno atuando em receptores GABA_A como mostrou o teste claro/escuro, sendo que na dose de 40 mg/kg obteve-se 78,27% de permanêcia na zona clara, semelhante estatisticamente à droga diazepam.

A atividade antiproliferativa ou citotóxica do composto DB cloro também foi bastante animadora, reduziu a viabilidade celular de HCT-116 em 85,03%, valor este considerado como um bom resultado. Mostrou-se menos ativa para a linhagem PC3, reduzindo a viabilidade celular em 30,74% e foi completamente inativa contra as células tumorais do tipo SNB. Inibiu o efluxo de EtBr em 37% tanto para SA1199B quanto para K2068. Estudos mostraram que o DB cloro ocupou essencialmente o mesmo sítio de ligação do EtBr nessas duas bombas de efluxo, configurando também uma provável inibição por competição. Contudo não foi capaz de reduzir a CIM dos antibióticos norfloxacino e ciprofloxacino, respectivamente, contra as duas cepas utilizadas. O DB cloro apresentou resultado ainda melhor que o DB tiofeno quanto a redução a atividade locomotora de zebrafish, 72,12%, 51,66% e 37,84% de redução para doses de 4 mg/kg, 20 mg/kg e 40 mg/kg, respectivamente. O teste claro/escuro revelou que o DB cloro também produziu aumento da permanência dos animais na zona clara indicando um potencial efeito ansiolítico. O resultado obtido na maior dose também foi estatisticamente semelhantes ao do diazepam. Tal como o DB tiofeno, o efeito ansiolítico do DB cloro ocorre por mecanismo de ação GABAérgica como revelou o teste de mecanismo de ação. Isso põe esses dois derivados da dibenzalacetona como potenciais substâncias com efeitos ansiolíticos.

Dentre os três compostos objetos desse estudo, o DB etoxi foi aquele que obteve resultados menos expressivos. Evidenciou baixa inibição do crescimento celular contra a linhagem HCT-116, exibindo 8,21% de redução de viabilidade, e 12,59% contra a linhagem PC3. Assim como o DB cloro, apresentou completa inatividade contra o glioblastoma (SNB). Inibiu o efluxo de EtBr mediado por NorA em 37%, porém mostrou-se inativa para o efluxo de EtBr mediado pela MepA. Controversamente reduziu a CIM do ciprofloxacino em K2068, porém acredita-se que essa redução não se deu pela inibição da bomba de efluxo MepA, provavelmente pode ser resultado de alguma alteração da permeabilidade da membrana celular. Esse composto não modificou significativamente a locomoção dos *zebrafish* em nenhuma das doses estudadas. A não alteração da locomoção dos animais pode sugerir uma ação antinociceptiva desse composto. Vale ressaltar que os três derivados da dibenzalacetona desse

estudo obtiveram $LC_{50} > 40 \text{ mg/kg}$ até 96 horas, portanto foram considerados seguros, e não demostraram atividade intrínseca contra as cepas SA1199B e K2068.

Claramente observa-se uma ordem de desempenho entre os três derivados da dibenzalacetona estudados, em que o DB tiofeno e o DB cloro se apresentam como moléculas potencialmente candidatas a se tornarem fármacos. Isso provavelmente se dá devido aos anéis tiofeno no DB tiofeno, e do átomo de cloro substituinte na posição *para* dos anéis benzeno no DB cloro. Já é sabido que derivados de chalconas com anél heterocíclico e átomos de cloro substituintes demostram atividade contra diversas linhagens de câncer. Já o grupo etoxi substituinte no DB etoxi, exerce um efeito doador de elétrons maior que o átomo de cloro, que possui grande eletronegatividade, portanto a diferença de desempenho do DB etoxi pode ser devido à disparidade no efeito mesomérico entre os dois grupos. Também podemos sugerir que o maior "comprimento" na molécula do DB etoxi, fruto dos seus subtituintes, pode dificultar seu acesso aos sítios ativos. Testes *in silico* das três moléculas mostram que todas possuem solubilidade moderada, alta absorção gastrointestinal e que passaram no teste R05 de Lipinski, tendo apenas o DB cloro violado um dos quesitos e os outros dois compostos, nenhum. Todos eles apresentam uma alta biodisponibilidade.

5.2. CONCLUSÕES GERAIS

Os três derivados da dibenzalacetona DB tiofeno, DB etoxi e DB cloro são moléculas sintéticas que apresentam dois grupos enonas. Tiveram suas estruturas químicas caracterizadas e seus modos de vibração descritos e atribuidos pela primeira vez. O DB tiofeno e o DB cloro revelaram grande potencial em se tornarem fármacos pois possuem efeito citotóxico em células tumorais (HCT-116 e PC3) e demostram efeito ansiolítico em sistema GABAérgico. São prováveis inibidores das bombas de efluxo NorA e MepA. Além disso, o DB tiofeno apresenta-se como provável candidato a adjuvante dos antibióticos norfloxacino e ciprofloxacino.

5.3. PERSPECTIVAS DE INVESTIGAÇÕES FUTURAS

Esse trabalho além de apresentar dois compostos com potencial ação citotóxica, ansiolítica e moduladora do efluxo, também traz algumas possibilidades de investigações futuras, tais como:

- Investigação do mecanismo de ação dos compostos DB tiofeno e DB cloro contra as células tumorais HCT-116 e PC3, bem como determinação da IC₅₀.
- Investigação de uma possível ação antinociceptiva do composto DB etoxi.

- Confirmação da inibição do efluxo de EtBr por ensaios fluorimétricos para corroborar com ensaios de microdiluição.
- Prosseguimento da investigação do efeito citotóxico e reversor da resistência bacteriana pelo DB tiofeno e DB cloro em modelos *in vivo*.
- Desenvolvimento de um modelo da relação quantitativa estrutura/atividade (QSAR) para prever atividades biológicas das chalconas e derivados.

ANEXO A – Certificado do Comitê de Ética para Uso de Animais da Universidade Estadual do Ceará (CEUA – UECE).

Comitê de Ética para o Uso de Animais Av. Silas Munguba, 1700 – Itaperi CEP 60740-903 – fone 3101-9890 <u>ceua.uece@uece.br</u> – www.uece.br/ceua

CERTIFICADO

Certificamos que o **Projeto de Pesquisa** intitulado "**Uso do zebrafish** (*Danio rerio*) como **biosensor em testes toxicológicos**" registrado sob o número **3344801/2017**, tendo como pesquisador principal **Francisco Ernani Alves Magalhães**, está de acordo com os Princípios Éticos de Experimentação Animal, adotados pelo **Comitê de Ética para o Uso de Animais da Universidade Estadual do Ceará** (CEUA – UECE), tendo sido aprovado em 09 de junho de 2017. Este certificado expira-se em 16 de dezembro de 2020.

CERTIFICATE

We hereby certify that the Project entitled "Uso do zebrafish (*Danio rerio*) como biosensor em testes toxicológicos" registered with the protocol **3344801/2017**, under the supervision of Francisco Ernani Alves Magalhães is in agreement with Ethical Principles in Animal Experimentation, adopted by the Ethics Committee in Animal Experimentation of Ceará State University (CEUA – UECE). This certificate will expire in december 16, 2020.

DESUMO

NEOCINO 1				
Vigência do projeto	01/08/2017 a 31/07/2020			
Espécie/linhagem	Zebrasfish (Danio rerio)			
Número de animais	1000			
Peso/idade	0,3 a 0,6 gr/ três meses			
Sexo	500 Machos e 500 Femeas			
Origom	Obtidos de um fornecedor comercial de			
Ongen	Fortaleza			

Fortaleza, 25 de julho de 2017.

Erialdos Farias de Aragas

Maria Erivalda Farias de Aragão Presidente CEUA-UECE **ANEXO B** – Perfil físico-químico, lipofílico, farmacocinético e de semelhança com drogas do DB tiofeno realizado *in silico* no SwissADME.

Molecule 1					
H 00				Water Solubility	
-	LIPO		Log S (ESOL)	-3.80	
			Solubility	3.88e-02 mg/ml ; 1.58e-04 mol/l	
	FLEX	SIZE	Class 🤭	Soluble	
2			Log S (Ali) 😣	-4.78	
de.			Solubility	4.09e-03 mg/ml ; 1.66e-05 mol/l	
			Class 🧐	Moderately soluble	
1	INSATU	POLAR	Log S (SILICOS-IT) 0	-3.59	
			Solubility	6.38e-02 mg/ml ; 2.59e-04 mol/l	
			Class 🧐	Soluble	
	NSO(U			Pharmacokinetics	
SMILES O=C(/C=C/c1ccc	s1)/C=C/c1cccs1		GI absorption 🔴	High	
Pt	hysicochemical Properties		BBB permeant 🔴	Yes	
Formula	C13H10OS2		P-gp substrate 😑	No	
Molecular weight	246.35 g/mol		CYP1A2 inhibitor ()	Yes	
Num. heavy atoms	16		CYP2C19 inhibitor 0	Yes	
Num. arom. heavy atoms	10		CYP2C9 inhibitor 😑	Yes	
Fraction Cap3	0.00		CYP2D6 inhibitor \varTheta	No	
Num. rotatable bonds	4		CYP3A4 inhibitor 😑	No	
Num. H-bond acceptors	1		Log K. (skin permeation)	-5.28 cm/s	
Num. H-bond donors	0			Drupikeness	
Molar Refractivity	71.71		Lininski 🙆	Ves: 0 violation	
rpsa 🤴	73.55 Ų		Chase 0	Ves	
	Lipophilicity		Veber 🔒	Ves	
og Poly (iLOGP)	2.82		Veder 😔	Tes Ver	
og Palw (XLOGP3) 🥯	3.55		Egan o	Tes	
Log Poly (WLOGP)	3.89		Nuegge V	168	
og Poly (MLOGP)	2.53		Dioavaliability Scole 😈	Medicinal Chemistry	
OG POW (SILICOS-IT)	5.74		PAINS	0 alert	
Consensus Log P . 9	3 70		Presk 6	1 elect michael eccenter 1 1	
10/W	0.70			No: 2 violations: MM/-250 XI CCP2-25	
			Conthetia assessibility (140, 2 VIJIAUONS, WW-2200, ALUGP3>3.5	
			Synthetic accessionity	2.01	

ANEXO C – Perfil físico-químico, lipofílico, farmacocinético e de semelhança com drogas do DB cloro realizado *in silico* no SwissADME.

Molecule 3			0
H @@			Water Solubility
	LIPO	Log S (ESOL)	-5.37
ſŶ		Solubility	1.29e-03 mg/ml ; 4.26e-06 mol/l
	R.EX SIZE	Class 😑	Moderately soluble
2 August 1		Log S (Ali) 😑	-5.63
		Solubility	7.15e-04 mg/ml ; 2.36e-06 mol/l
Ì		Class 😣	Moderately soluble
	INSATU POLAR	Log S (SILICOS-IT)	-6.26
		Solubility	1.66e-04 mg/ml ; 5.47e-07 mol/l
a		Class 🥹	Poorly soluble
	INSOLU		Pharmacokinetics
SMILES O=C(/C=C/c1ccc	(cc1)Cl)/C=C/c1ccc(cc1)Cl	GI absorption 😑	High
PI	hysicochemical Properties	BBB permeant 🥹	Yes
Formula	C17H12CI2O	P-gp substrate 🥹	No
Molecular weight	303.18 g/mol	CYP1A2 inhibitor 6	Yes
Num. heavy atoms	20	CYP2C19 inhibitor 🥹	Yes
Num. arom. heavy atoms	12	CYP2C9 inhibitor 😑	Yes
Fraction Cap3	0.00	CYP2D6 inhibitor 😑	No
Num. rotatable bonds	4	CYP3A4 inhibitor 0	No
Num. H-bond acceptors	1	Log K. (skin permeation)	-4 24 cm/s
Num. H-bond donors	0		Drugikeness
Molar Refractivity	85.98	Lininski 😣	Ves: 1 violation: MI OGP-4 15
TPSA	17.07 Ų	Ghose 9	Vas
	Lipophilicity	Vahar 🔞	Vas
Log Palw (iLOGP)	3.39	Fran ()	Van
Log Poly (XLOGP3)	5.51	Musson	No: 2 violations: XI OGP2-5 Haterostome-2
Log Poly (WLOGP)	5.07	Ricousilability Coore	0.55
Log Poly (MLOGP)	4.86	Dioavanability Soore	Medicinal Chemistry
Log Poly (SILICOS-IT)	5.78	PAINS	0 alert
Consensus Log Poly	4.92	Brenk 🧐	1 alert michael acceptor 1 1
		Leadlikeness 😑	No; 1 violation: XLOGP3>3.5
		Synthetic accessibility	2.48

ANEXO D – Perfil físico-químico, lipofílico, farmacocinético e de semelhança com drogas do DB etoxi realizado *in silico* no SwissADME.

Molecule 2			
H @@			Water Solubility
OK.	LPO	Log S (ESOL)	4.93
		Solubility	3.83e-03 mg/ml ; 1.19e-05 mol/l
4	R.EX SIZE	Class 🤭	Moderately soluble
		Log S (Ali) 😑	-5.64
and the second s		Solubility	7.36e-04 mg/ml : 2.28e-06 mol/l
<u></u>		Class	Moderately soluble
	RISATU POLAR	Log S (SILICOS-IT) 😣	-6.08
· · · ·		Solubility	2.65e-04 mg/ml ; 8.22e-07 mol/l
La.		Class 🥹	Poorly soluble
	INSOLU		Pharmacokinetics
SMILES CCOc1ccc(cc1)/C	=C/C(=O)/C=C/c1ccc(cc1)OCC	GI absorption 😑	High
Ph	sicochemical Properties	BBB permeant 🗐	Yes
Formula	C21H22O3	P-gp substrate 🥹	No
Molecular weight	322.40 g/mol	CYP1A2 inhibitor 0	Yes
Num. heavy atoms	24	CYP2C19 inhibitor 🥹	Yes
Num. arom. heavy atoms	12	CYP2C9 inhibitor	Yes
Fraction Cap3	0.19	CYP2D6 inhibitor	Yes
Num. rotatable bonds	8	CYP3A4 inhibitor 😑	Yes
Num. H-bond acceptors	3	Log K. (skin permeation) 9	-4 61 cm/s
Num. H-bond donors	0	-s pt - r	Drugikeness
Molar Refractivity	98.56	Lininski 🕖	Yes: 0 violation
TPSA 🥹	35.53 Ų	Ghose ()	Ven
	Lipophilicity	Veber 🙆	Vee
Log P _{olw} (iLOGP) 1	4.10	Fan	Ves
Log Palw (XLOGP3)	5.15	Musson 🖗	No: 1 violation: XI OGP2-5
Log Poly (WLOGP) 😣	4.56	Biogunilability Coord	0.55
Log Poly (MLOGP)	3.50	bioavanabinty Score 😈	Medicinal Chemistry
Log Poly (SILICOS-IT)	5.42	PAINS	0 plent
Consensus Log Poly	4.55	Brenk 😑	1 alert: michael acceptor 1 1
		Leadlikeness 😑	No: 2 violations: Rotors>7, XLOGP3>3.5
		Synthetic accessibility 0	2 73

APÊNDICE I – PRODUÇÃO ACADÊMICA (2018 - 2021)

Artigos publicados:

2021

Journal of Molecular Structure 1231 (2021) 129670

Full Spectroscopic Characterization and Cytotoxicity Activity of Synthetic Dibenzalacetone Derivatives.

Mauro M. de Oliveira^{a,a}, Carlos E.S. Nogueira^{a,e}, Francisco Wagner Q. Almeida-Neto^f, Helcio S. Santos^{a,b}, Alexandre M.R. Teixeira^{a,e}, Pedro de Lima-Neto^f, Emmanuel S. Marinho^g, Manoel O. de Moraes^c, Claudia Pessoa^c, Francisco Washington A. Barros-Nepomuceno^d

¹Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
¹Science and Technology Centre - Course of Chemistry, State University Vale do Acaraía, Sobral, CE, Brazil
⁵Center for Research and Drug Development, Federal University of Ceará, Fortaleza, CE, Brazil
⁶Department of Andysical Chemistry of Mierrational Integration of the Afro-Brazillu usophory, Acarape, CE, Brazil
⁶Department of Analysical Chemistry and Physical Chemistry, Federal University of Ceará, Fortaleza, CE, Brazil
⁸State Univer

ABSTRACT

Article history: Received 26 September 2020 Accepted 24 November 2020 Available online 27 November 2020 Keywords Dibenzalacetone derivatives Cytotoxicity DFT troscopy, Cancer cells

ARTICLE INFO

Dibenzalacetone derivatives are organic compounds formed by two α , α' active sites that provide a large relocation of π -electrons. They have great polarizability that make them excellent chromophore and draw attention for their biological properties, mainly for their activity against nasopharyngeal, oral, colon, prostate and cervical cancer. Two dibenzalacetone derivatives, $(1E_4E_1)-15$ -bis(4-cthoxyphery])penta-14-dien-3-one and (1E_4E)-15-bis(4-cthorophery])penta-14-dien-3-one, were synthesized. Spectroscopic characterizations as well as vibrational assignments were predicted using density Functional Theory (DPT) calculations with B31VP exchange-correlation functional. Cytotoxicity assays of the synthesized com-pounds were performed against HCT-116, SNB and PC3 cells, showing promising results against cancer cells HCT-116.

© 2020 Elsevier B.V. All rights reserved.

Journal of Molecular Structure 1226 (2021) 129403

Contents lists available at ScienceDirect Journal of Molecular Structure

journal homepage: www.elsevier.com/locate/molstr

LECUL M

Synthesis, spectroscopic characterization and antibacterial evaluation by chalcones derived of acetophenone isolated from Croton anisodontus Müll.Arg.

P.T. da Silva^a, J. da Cunha Xavier^a, T.S. Freitas^a, M.M. Oliveira^a, H.D.M. Coutinho^a, A.L.A.B. Leal^d, H.M. Barreto^d, P.N. Bandeira^b, C.E.S. Nogueira^{a,c}, D.M. Sena Jr.^a, F.W.Q. Almeida-Neto^e, E.S. Marinho^r, H.S. Santos^{a,b}, A.M.R. Teixeira^{a,c,*}

Peparament of Biological Chemistry, Regional University of Carit (Cr, Brazil
 Constraints - Journal - Journal - Chemistry, Constraints - Journal - Journal - Chemistry, Constraints - Chemistry, Chemistr

ABSTRACT

ARTICLE INFO

Article historyc Received 10 April 2020 Revised 14 September 2020 Accepted 4 October 2020 Available online 7 October 2020 Keyw NMR ular specu сору ular docking Antibacterial activity

Chalcones and their derivatives have been widely studied at research institutions and industries, in or-der to verify their biological properties against various diseases. In this work, it was carry our the synthesis of chalcones (E)-2-furun-2-y1) – 1- (2-hydroxy-3.4-G-timethoxyphent)) prop-2-en-1-one (HYT-FURRURAL) and (E)-1- (2-hydroxy-3.4-dimethoxyphenty) 10-y2-en-1-one (HYT-FURRURAL statistical variable of the set of the s Chalcones and their derivatives have been widely studied at research institutions and industries, in or

© 2020 Elsevier B.V. All rights reserved

BIOCATALYSIS AND BIOTRANSFORMATION https://doi.org/10.1080/10242422.2021.1935897

RESEARCH ARTICLE

Synthesis of a new quinine dimer biocatalysed by the coconut water

Aluísio M. Fonseca^{a,b}, Leonardo Paes da Silva^c, Francisco Wagner de Queiroz Almeida-Neto^c, Regilany Paulo Colares^b, Mauro Macedo de Oliveira^{a,d}, Antônio Luthierre Gama Cavalcante^c Telma L. G. Lemos^e, Raimundo Braz-Filho^f, Pedro de Lima-Neto^c and Emmanuel Silva Marinho^{c,g}

^aMestrado Acadêmico em Sociobiodiversidades e Tecnologias Sustentáveis – MASTS, Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, Brazil; ^bInstituto de Ciências Exatas e da Natureza, Universidade da Integração Intemacional da Lusofonia Afro-Brasileira, Acarape, Brazil; 'Grupo de Química Teórica, Departamento de Analítica e Físico-Química, Universidade Federal do Ceará, Fortaleza, Brasil; dDepartamento de Química, Centro Universitário Paraíso – UNIFAP, Juazeiro do Norte, Brazili; ^eLaboratório de Biocatálise e Produtos Naturais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil; ^fCentro de Ciências e Tecnologias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos Dos Goytacazes, Brazil; 9Faculdade de Filosofia Dom Aureliano Matos - FAFIDAM, Universidade Estadual do Ceará, Centro, Brazil

ABSTRACT

ABSTRACT The obtaining of bis-quinine, a novel alkaloid dimer, has been successfully achieved starting from quinine and the raw coconut juice (Cocos nucifera) as biocatalyst dimerization-like reaction, in mild conditions, with a mass yield of 64.7% in 72 h. The structural elucidation was made based on the spectral data, mainly by a high-field NMR and a mass spectrometry. In a second step, theoretical calculations were performed, an optimised energy structure of the new com-pound was obtained, the energy gap of the boundary orbitals (HOMO and LUMO) as well as the chemical reactivity descriptors were estimated.

ARTICLE HISTORY Received 23 August 2020 Revised 7 May 2021 Accepted 23 May 2021

KEYWORDS Quinine; biotransformations; crude enzyme; coconut water

GRAPHICAL ABSTRACT

REVISTA LATINO-AMERICANA DE INOVAÇÃO E ENGENHARIA DE PRODUÇÃO

TRIZ AND TPM METHODOLOGIES APPLIED TO

MAINTENANCE PROBLEMS

METODOLOGIAS TRIZ E TPM NA RESOLUÇÃO DE PROBLEMAS DE MANUTENÇÃO

Ana B. S. O. Cruz¹[∞], Mauro M. Oliveira¹

Centro Universitário Paraíso, Juazeiro do Norte, Ceará/CE, Brasil

¹ anabeatrizoliveira@aluno.fapce.edu.br

Recebido: 29 janeiro 2021 / Aceito: 13 abril 2021 / Publicado: 28 junho 2021

al of Molecular Structure 1215 (2020) 128291

Spectroscopic characterization and efflux pump modulation of a thiophene curcumin derivative

Mauro M. Oliveira ^{a, *}, Helcio S. Santos ^{a, b}, Henrique D.M. Coutinho ^a, Paulo N. Bandeira ^b, Priscila T. da Silva ^a, Thiago S. Freitas ^a, Janaina E. Rocha ^a, Jayze C. Xavier ^a, Fabia F. Campina ^a, Cristina R.S. Barbosa ^a, José B. Araújo Neto ^a, Raimundo L.S. Pereira ^a, Maria M.C. Silva ^a, Débora F. Muniz ^a, Alexandre M.R. Teixeira ^{a, c}, Vanessa M. Frota ^b, Tigressa H.S. Rodrigues ^b, Ana M. Amado ^d, Maria P.M. Marques ^{d, e}, Luis A.E. Batista de Carvalho ^d, Carlos E.S. Nogueira ^{a, c, c}

^a Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil ^b Science and Technology Centre - Course of Chemistry, State University Vale Do Acaraú, Sobral, CE, Brazil ^c Department of Physics, Regional University of Cariri, Crato, CE, Brazil ^d Universidade de Coimbra, Unidade de 14.D Química-Fisica Molecular (QM-UC), Department of Chemistry, 3004-535 Coimbra, Portugal ^e Universidade de Coimbra, Department of Lije Sciences, 3000-456, Coimbra, Portugal

ARTICLE INFO

Article history: Received 15 March 2020 Received in revised form 16 April 2020 Accepted 16 April 2020 Available online 21 April 2020

Keywords Curcumin Chalcone Efflux pump DFT Spectroscopy Docking

ABSTRACT

Curcumin, along with its derivatives, form a large class of natural and synthetic compounds with notable Curcumin, along with its derivatives, form a large class of natural and synthetic compounds with notable biological activity. However, their highly reactive *B*-diketone moiety renders this type of compounds unstable at pH above 6.5. The substitution of this group for a mono-carbonyl solves this problem, while improving antibacterial and anti-inflammatory activities. A thiophene curcuminoid, (1E,4E), 1,5-Di(thiophen-2-yl)penta-1.4-dien-3-one (DB Thiophene), has been synthesised and its molecular and spectroscopic characterization is reported, as well as a complete vibrational assignment. An efflux pump inhibition assay determined that DB Thiophene exhibits a remarkable NorA and MepA efflux pump in-hibition activity. Molecular docking studies were carried out in order to understand this inhibition mechanism.

© 2020 Elsevier B.V. All rights reserved.

Industrial Crops and Products Volume 145, March 2020, 111890

The use of new hydrogel microcapsules in coconut juice as biocatalyst system for the reaction of quinine

Aluísio Marques da Fonseca ª A 🖾, losé Cleiton Sousa dos Santos ^b. Maria Cristiane Martins de Souza ^b. Mauro Macedo de Oliveira ª, Regilany Paulo Colares ª, Telma Leda Gomes de Lemos º, Raimundo Braz-Filho ^d

- ^a Institute of Exact and Nature Sciences, ICEN, Campus da Liberdade, Avenida da Abolição 3, Centro, University for the International Integration of the Afro-Brazilian Lusophony, UNILAB, CEP: 62.790-000, Redenção, CE, Brazil
- ^b Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Bloco A, Rua José Franco de Oliveira, s/n, 62790790 Redenção, CE, Brazil
- ^c Department of Organic and Inorganic Chemistry, Federal University of Ceará UFC, CEP: 60451-97, Fortaleza, Ceará, Brazil
- ^d Center for Science and Technology, Northern Fluminense State University Darcy Ribeiro, UENF, CEP: 28013-600, Campos dos Goytacazes, Rio de Janeiro, Brazil

Received 2 March 2018, Revised 17 October 2019, Accepted 19 October 2019, Available online 16 November 2019.

Journal of Molecular Structure 1212 (2020) 128141

Contents lists available at ScienceDirect

Journal of Molecular Structure

journal homepage: http://www.elsevier.com/locate/molstruc

Crystal structure, FT-Raman and FTIR spectra and DFT calculations of chalcone (2E)-1-(4-aminophenyl)-3-(furan-2-yl)prop-2-en-1-one monohydrate

C.E.S. Nogueira^{a, b, e, *}, Mauro M. de Oliveira^a, Alexandre M.R. Teixeira^{a, b}, Paulo N. Bandeira^c, Hélcio S. dos Santos^c, Alejandro Pedro Ayala^d, Beatriz P. Bezerra^d, Antônio C.H. Barreto^d, Paulo T.C. Freire

^a Departamento de Química Biológica, Universidade Regional do Cariri, Crato, CE, Brazil

bepartamento da Egiana Diovegia (interstada Regional do Carita, Late, CE, practa
 bepartamento de Física, Universidade Regional do Carita, Juaceiro do Norte, CE, Brazil
 ^c Curso de Química, Universidade Estadual Vale do Acaraía, Sobral, CE, Brazil
 ^a Operartamento de Física, Universidade Tederal do Ceará, Fortaleza, CE, Brazil
 ^a Unidade de I&D Química-Física Molecular, Departamento de Química – University of Coimbra, 3004-535, Coimbra, Portugal

ARTICLE INFO

Article history: Received 21 December 2019 Received in revised form 15 March 2020 Accepted 25 March 2020 Available online 5 April 2020

Keywords: Chalcone monohydrate Single crystal X-ray diffraction Vibrational spectra

ABSTRACT

In this work we present a study of the structural and vibrational properties of the chalcone (2E)-1-(4minophenyl)-3-(trans-y)/prop-2-en-1-one monohydrate, $G_{\rm I}$ H₁₀Q, H₂Q, a strong candidate for fluorescent probes, luminescent materials and optoelectronic devices. The crystalline structure of this chalcone monohydrate was determined at 273 K using single-crystal X-ray diffraction. The Attenuated Total Reflection Fourier Transform Infrared (ATR-FIIR) and Fourier Transform-Raman (FT-Raman) spectra of the crystal were recorded at room temperature in the regions 600-4000 cm⁻¹ and 40-4000 cm⁻¹ respectively. Vibrational wavenumbers were predicted using Density Functional Theory (DFT) calcula-tions with B3LYP exchange-correlation functional with the B3LYP functional and 6-31G(d) basis set. A comparison with experimental spectra using a hydrated model allowed us to assign all of the normal modes of this crystal. Additionally, we report the UV–Vis spectra and the Hirshfeld surface analysis of the AFPO crystal.

© 2020 Elsevier B.V. All rights reserved

uth African Journal of Botany 132 (2020) 140–145

Contents lists available at ScienceDirect South African Journal of Botany journal homepage: www.elsevier.com/locate/sajb

Structural characterization, antibacterial activity and NorA efflux pump inhibition of flavonoid fisetinidol

Horlando Carlota da Silva^a, Antonio Linkoln Alves Borges Leal^{b,c}, Mauro Macedo de Oliveira^b, Humberto Medeiros Barreto^{cd}, Henrique Douglas Melo Coutinho^b, Hélcio Silva dos Santos^b Gilvandete Maria Pinheiro Santiago^a, Thiago Sampaio de Freitas^b, Igor Kleber Campos Lima^b, Alexandre Magno Rodrigues Teixeira^{b,f}, Carlos Emídio Sampaio Nogueira^{b,f}

^a Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, CE, Brazil

^a Department of Organic and Inorganic Chemistry, Nederal University of Carac, Fortaleza, C., Brazil
^b Department of Biological Chemistry, Regional University of Caral, C.F. Brazil
^claboratory of Microbiology and Parasikology, Federal University of Caral, Teresina, P., Brazil
^cDepartment of Parasikology and Microbia L Federal University of Caral, C.F. Brazil
^cScience and Technology Center, Course of Chemistry, State University Vale do Acarai, Sobral, C.F. Brazil
^sScience and Technology Center, Postgraduate Program in Natural Sciences, State University of Cara, Fortaleza, C.F. Brazil
^sScience and Technology Center, Postgraduate Program in Natural Sciences, State University of Cara, Fortaleza, C.F. Brazil
^sScience and Technology Center, Postgraduate Program in Natural Sciences, State University of Cara, Fortaleza, C.F. Brazil
^sScience and Technology Center, Postgraduate Program in Natural Sciences, State University of Cara, Science Acad, Science Academic Academic

ARTICLE INFO ABSTRACT Article History: Received 8 January 2020 Revised 16 March 2020 Accepted 22 March 2020 Available online xxx Flavonoids belong to the extensive group of polyphenols and have several biological activities such as antiinflammatory, anti-ulcer, anticancer, antiviral, antibacterial, and antispasmodic. These compounds can thus be explored as a tool against multidrug resistant bacteria, as nosocomial infections now constitute a major public health problem worldwide. We have carried out a structural characterization by nuclear magnetic res-onance and FT-IR of fisetinidol, a flavonoid isolated from *B. pentandra* stems. In addition, this flavonoid was tested for antibacterial and modulatory activities, as well as inhibition of the NorA efflux pump. Esetinidol has no intrinsic antibacterial activity. However, there is synergism in association with norfloxacin, with a two-fold decrease in MIC. When compared to chlorpromazine, a standard efflux pump inhibitor, a two-fold Edited by S Van Vuuren Keywords: Reywords: Spectroscopy Flavonoid Antibacterial activity Efflux pump Staphylococcus aureus decrease in MIC was also verified when used against S. gureus SA-1199B, which over expresses the NorA gene encoding the NorA efflux protein. As such, it could become an alternative source to reverse the bacterial resistance if administered in association with antibiotics. © 2020 SAAB. Published by Elsevier B.V. All rights reserved.

MODELAGEM DA PREVISÃO DE VENDAS DE UMA UNIDADE AGRÍCOLA PRODUTORA DE BANANAS EM MISSÃO VELHA (CE)

BANANA SALES FORECASTING MODEL OF AN AGRICULTURAL UNIT, IN CEARÁ, BRAZIL

Jaqueline de Jesus Lima* E-mail: jaquelinedejesus@aluno.fapce.edu.br Mauro Macedo de Oliveira* E-mail: <u>mauro.oliveira@fapce.edu.br</u> *Centro Universitário Paraíso (UNIFAP), Juazeiro do Norte, Ceará

Resumo: A importância de planejar as necessidades futuras surge das exigências dos processos decisórios, uma vez que todos os negócios estão suscetíveis a imprevistos e necessitam ter flexibilidade. No processo de realização do planejamento estratégico é de grande importância incluir a previsão de demanda para dimensionar a capacidade produtiva. Um estudo de previsão demanda foi desenvolvido numa empresa de 330 hectares que cultiva bananas prata e nanica, localizada na cidade de Missão Velha, estado do Ceará. Este trabalho consiste numa pesquisa explicativa com abordagem quantitativa, onde inicialmente foram levantados os dados históricos de vendas e em seguida verificados seus comportamentos a partir de testes estatísticos. Foi escolhida a banana prata pela sua representatividade para a empresa. Identificou-se comportamentos de tendência e sazonalidade. Após essa constatação aplicou-se os métodos ARIMA e Holt-Winters a fim de identificar o método que melhor se adequava, com o intuito de evitar desequilíbrios entre a equipe de produção e comercial. O método que apresentou os melhores resultados foi o ARIMA (1,1,1), tendo como critério para a validação o MAD, MAPE e MSD.

Palavras-chave: Previsão de demanda. Planejamento e controle da produção. Bananicultura.

• 2019

Rev. Eletr. Gest., Educ. Tec. Ambient. Santa Maria v.23, e32, p. 01-12, 2019 DOI:10.5902/2236117038731 - ISSN 2236-1170

Artigo Original

Enzymatic Biocatalyst using enzymes from Pineapple (Ananas comosus) Peel Immobilized in Hydrogel Beads.

Biocatalisador enzimático usando enzimas da casca do abacaxi (Ananas comosus) imobilizado em esferas de hidrogel.

Aluísio Marques da Fonseca¹, Regilany Paulo Colares^{II}, Mauro Macedo de Oliveira^{III}, Maria Cristiane Martins de Souza^{IV}, Rodolpho Ramiton de Castro Monteiro^V, Rinaldo dos Santos Araújo^{vI}, Aiala Vieira Amorim^{VII}, José Cleiton Sousa dos Santos^{VIII}, Carlos Alvarado Alcócer^{IX}, Olienaide Ribeiro de Oliveira Pinto^x

Abstract

The enzymatic extract from pineapple peels, considering the time factor, low cost and ease of preparation of the reaction system, makes the use of this plant material scrap an economical alternative for some reactions of synthetic interest. Therefore, this work aimed to prepare pineapple peel enzymatic extract containing bromelain, with and without mechanical grinding for a period of up to 9-days of extraction, and then immobilizing those extracts on hydrogel beads for their application as a biocatalyst to produce energy interest esters. The best protein content obtained was 1.95 mg mL⁻¹ for 6-days with mechanical grinding, as for the hydrolysis of p-NPP (p-nitrophenyl palmitate), 0.0125 U.mL⁻¹ for 1-day extraction with trituration. The best index esterification activity achieved for the lauric acid as a substrate was 1.8 UmL⁻¹ at 1-day extract on without grinding. For the hydrogel beads immobilization, an aximum protein yield of 28.8% was obtained with the 1-day extract and mechanical grinding. The immobilized and dehydrated beads with 1-day extract without grinding to 9 the odd and in terms of p-NPP activity, a yield of 40.6% for the immobilized with 9-day extract on activity, 7.2 U g⁻¹ of biocatalyst. The best conversion performance in the biocatalysis of fatty esters was by esterification of the dodecanoate n-propyl, with 95.1% for a period of 48 hours of reaction. For the transesterification reaction, the methyl oleate yield reached 47.3% after 120 hours of reaction.

Keywords: Enzymatic extract, Bromelain, Pineapple, Fatty acids, Transesterification